Solved

Using Power Series Methods, the Solution Of 2xy+y+2y=02 x y ^ { \prime \prime } + y ^ { \prime } + 2 y = 0

Question 47

Multiple Choice

Using power series methods, the solution of 2xy+y+2y=02 x y ^ { \prime \prime } + y ^ { \prime } + 2 y = 0 is


A) y=c0n1(2) nxn/(n!(13(2n1) ) ) +c1x1/2n1(2) nxn/(n!(35(2n+1) ) ) \begin{array} { l } y = c _ { 0 } \sum _ { n - 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) + \\c _ { 1 } x ^ { 1 / 2 } \sum _ { n - 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \end{array}
B) y=c0n1(2) nxn/(n!(13(2n1) ) ) +c1x1/2[1+n1(2) nxn/(n!(35(2n+1) ) ) ]\begin{array} { l } y = c _ { 0 } \sum _ { n - 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) + \\c _ { 1 } x ^ { 1 / 2 } \left[ 1 + \sum _ { n - 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
C) y=c0[1+n=1(2) nxn/(n!(13(2n1) ) ) ]+c1[1+n=1(2) nxn/(n!(35(2n+1) ) ) ]\begin{array} { l } y = c _ { 0 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\c _ { 1 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
D) y=c0[1+n=1(2) nxn/(n!(13(2n1) ) ) ]+c1x1/2[1+n=1(2) nxn/(n!(35(2n+1) ) ) ]\begin{array} { l } y = c _ { 0 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\c _ { 1 } x ^ { 1 / 2 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
E) y=[1+n1(2) nxn/(n!(13(2n1) ) ) ]+x1/2[1+n1(2) nxn/(n!(35(2n+1) ) ) ]\begin{array} { l } y = \left[ 1 + \sum _ { n - 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\x ^ { 1 / 2 } \left[ 1 + \sum _ { n - 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions