Solved

The Solution Of y+y=tanxy ^ { \prime \prime } + y = \tan x

Question 48

Multiple Choice

The solution of y+y=tanxy ^ { \prime \prime } + y = \tan x is


A) y=c1cosx+c2sinx+cosxlnsecx+tanxy = c _ { 1 } \cos x + c _ { 2 } \sin x + \cos x \ln | \sec x + \tan x |
B) y=c1cosx+c2sinxcosxlnsecx+tanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \sec x + \tan x |
C) y=c1cosx+c2sinx+cosxlnsecxy = c _ { 1 } \cos x + c _ { 2 } \sin x + \cos x \ln | \sec x |
D) y=c1cosx+c2sinxcosxlntanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \tan x |
E) y=c1cosx+c2sinxcosxlnsecxtanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \sec x - \tan x |

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions