Solved

Using Laplace Transform Methods, the Solution Of y+y=δ(tπ),y(0)=1,y(0)=0y ^ { \prime \prime } + y = \delta ( t - \pi ) , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 0

Question 33

Multiple Choice

Using Laplace transform methods, the solution of y+y=δ(tπ) ,y(0) =1,y(0) =0y ^ { \prime \prime } + y = \delta ( t - \pi ) , y ( 0 ) = 1 , y ^ { \prime } ( 0 ) = 0 is


A) y=sint+sin(tπ) u(tπ) y = \sin t + \sin ( t - \pi ) \boldsymbol { u } ( t - \pi )
B) y=sintcos(tπ) u(tπ) y = \sin t - \cos ( t - \pi ) u ( t - \pi )
C) y=cost+sin(tπ) u(tπ) y = \cos t + \sin ( t - \pi ) u ( t - \pi )
D) y=cost+cos(tπ) u(tπ) y = \cos t + \cos ( t - \pi ) u ( t - \pi )
E) y=costsin(tπ) u(tπ) y = \cos t - \sin ( t - \pi ) u ( t - \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions