Solved

The Solution of the Previous Problem Is
A) y=w0[4(t5)3u(t5)+15t22t3]/(24EI)y = w _ { 0 } \left[ 4 ( t - 5 ) ^ { 3 } u ( t - 5 ) + 15 t ^ { 2 } - 2 t ^ { 3 } \right] / ( 24 E I )

Question 29

Multiple Choice

The solution of the previous problem is


A) y=w0[4(t5) 3u(t5) +15t22t3]/(24EI) y = w _ { 0 } \left[ 4 ( t - 5 ) ^ { 3 } u ( t - 5 ) + 15 t ^ { 2 } - 2 t ^ { 3 } \right] / ( 24 E I )
B) y=w0[4(t5) 3u(t5) +15t22t3]/(12EI) y = w _ { 0 } \left[ 4 ( t - 5 ) ^ { 3 } u ( t - 5 ) + 15 t ^ { 2 } - 2 t ^ { 3 } \right] / ( 12 E I )
C) y=w0EI[4(t5) 3u(t5) +15t22t3]/24y = w _ { 0 } E I \left[ 4 ( t - 5 ) ^ { 3 } u ( t - 5 ) + 15 t ^ { 2 } - 2 t ^ { 3 } \right] / 24
D) y=w0EI[4(t5) 3u(t5) 15t22t3]/12y = w _ { 0 } E I \left[ 4 ( t - 5 ) ^ { 3 } u ( t - 5 ) - 15 t ^ { 2 } - 2 t ^ { 3 } \right] / 12
E) y=w0[4(t5) 3u(t5) 15t22t3]/(24EI) y = w _ { 0 } \left[ 4 ( t - 5 ) ^ { 3 } u ( t - 5 ) - 15 t ^ { 2 } - 2 t ^ { 3 } \right] / ( 24 E I )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions