Solved

In the Previous Problem, the Exact Solution of the Initial y=(e2x1)/(e2x+1)y = \left( e ^ { 2 x } - 1 \right) / \left( e ^ { 2 x } + 1 \right)

Question 26

Multiple Choice

In the previous problem, the exact solution of the initial value problem is


A) y=(e2x1) /(e2x+1) y = \left( e ^ { 2 x } - 1 \right) / \left( e ^ { 2 x } + 1 \right)
B) y=(e2x+1) /(e2x1) y = \left( e ^ { 2 x } + 1 \right) / \left( e ^ { 2 x } - 1 \right)
C) y=(e2x1) /(e2x+1) y = \left( e ^ { - 2 x } - 1 \right) / \left( e ^ { - 2 x } + 1 \right)
D) y=(e2x+1) /(e2x1) y = - \left( e ^ { - 2 x } + 1 \right) / \left( e ^ { - 2 x } - 1 \right)
E) y=(e2x1) /(e2x+1) y = - \left( e ^ { 2 x } - 1 \right) / \left( e ^ { 2 x } + 1 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions