Solved

The Central Difference Approximation For Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }

Question 31

Multiple Choice

The central difference approximation for c2ux2=ut,u(0,t) =0,u(2,t) =6,u(x,0) =3x2/2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 2 , t ) = 6 , u ( x , 0 ) = 3 x ^ { 2 } / 2 Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/2h = 1 / 2 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/4k = 1 / 4 . The resulting equation is


A) c[u(x+h,t) 2u(x,t) +u(xh,t) ]/h2=(u(x,t+k) u(x,t) ) /kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t) 4u(x,t) +u(xh,t) ]/h2=(u(x,t+k) +u(x,t) ) /kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t) 4u(x,t) +u(xh,t) ]/h2=(u(x,t+k) u(x,t) ) /kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t) +2u(x,t) +u(xh,t) ]/h2=(u(x,t+k) u(x,t) ) /kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
E) c[u(x+h,t) +2u(x,t) +u(xh,t) ]/h2=(u(x,t+k) +u(x,t) ) /kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions