Solved

The Forward Difference Approximation Of ut\frac { \partial u } { \partial t }

Question 30

Multiple Choice

The forward difference approximation of ut\frac { \partial u } { \partial t } with step size k is


A) (u(x+k,t) u(x,t) ) /k( u ( x + k , t ) - u ( x , t ) ) / k
B) (u(xk,t) u(x,t) ) /k2( u ( x - k , t ) - u ( x , t ) ) / k ^ { 2 }
C) (u(x,t+k) u(x,t) ) /k( u ( x , t + k ) - u ( x , t ) ) / k
D) (u(x,tk) u(x,t) ) /k( u ( x , t - k ) - u ( x , t ) ) / k
E) (u(x,t+k) u(x,t) ) /k2( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions