Solved

Consider the Problem Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }

Question 29

Multiple Choice

Consider the problem c2ux2=ut,u(0,t) =0,u(1,t) =2,u(x,0) =2x2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 1 , t ) = 2 , u ( x , 0 ) = 2 x ^ { 2 } . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/3h = 1 / 3 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/2k = 1 / 2 . The resulting equation is


A) c[u(x+h,t) +2u(x,t) +u(xh,t) ]/h2=(u(x,t+k) u(x,t) ) /kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t) +2u(x,t) +u(xh,t) ]/h2=(u(x,t+k) +u(x,t) ) /kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t) 2u(x,t) +u(xh,t) ]/h2=(u(x,t+k) u(x,t) ) /kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t) 4u(x,t) +u(xh,t) ]/h2=(u(x,t+k) +u(x,t) ) /kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
E) c[u(x+h,t) 4u(x,t) +u(xh,t) ]/h2=(u(x,t+k) u(x,t) ) /kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions