Question 29
Multiple Choice Consider the problem c ∂ 2 u ∂ x 2 = ∂ u ∂ t , u ( 0 , t ) = 0 , u ( 1 , t ) = 2 , u ( x , 0 ) = 2 x 2 c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 1 , t ) = 2 , u ( x , 0 ) = 2 x ^ { 2 } c ∂ x 2 ∂ 2 u = ∂ t ∂ u , u ( 0 , t ) = 0 , u ( 1 , t ) = 2 , u ( x , 0 ) = 2 x 2 . Replace ∂ 2 u ∂ x 2 \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } ∂ x 2 ∂ 2 u with a central difference approximation with h = 1 / 3 h = 1 / 3 h = 1/3 and ∂ u ∂ t \frac { \partial u } { \partial t } ∂ t ∂ u with a forward difference approximation with k = 1 / 2 k = 1 / 2 k = 1/2 . The resulting equation is
A) c [ u ( x + h , t ) + 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k c [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k c [ u ( x + h , t ) + 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k B) c [ u ( x + h , t ) + 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) + u ( x , t ) ) / k c [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k c [ u ( x + h , t ) + 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) + u ( x , t ) ) / k C) c [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k c [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k c [ u ( x + h , t ) − 2 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k D) c [ u ( x + h , t ) − 4 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) + u ( x , t ) ) / k c [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k c [ u ( x + h , t ) − 4 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) + u ( x , t ) ) / k E) c [ u ( x + h , t ) − 4 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k c [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k c [ u ( x + h , t ) − 4 u ( x , t ) + u ( x − h , t ) ] / h 2 = ( u ( x , t + k ) − u ( x , t ) ) / k
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free