Solved

In the Previous Problem, Using the Notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } )

Question 34

Multiple Choice

In the previous problem, using the notation uij=u(x,t) u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h\lambda = c k / h , the equation becomes


A) ui,j1=λ2ui+1,j+2(1+λ2) uij+λ2ui1,j+ui,j1u _ { i , j - 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 + \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } + u _ { i , j - 1 }
B) ui,j1=λui+1,j+2(1λ) uij+λui1,j+ui,j1u _ { i , j - 1 } = \lambda u _ { i + 1 , j } + 2 ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j } + u _ { i , j - 1 }
C) ui,j+1=λ2ui+1,j+2(1+λ2) uij+λ2ui1,jui,j1u _ { i , j + 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 + \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } - u _ { i , j - 1 }
D) ui,j+1=λ2ui+1,j+2(1λ2) uij+λ2ui1,jui,j1u _ { i , j + 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 - \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } - u _ { i , j - 1 }
E) ui,j+1=λui+1,j+(1λ) uij+λui1,jui,j1u _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j } - u _ { i , j - 1 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions