Solved

In the Previous Problem, Apply a Fourier Sine Transform in X

Question 39

Multiple Choice

In the previous problem, apply a Fourier sine transform in x. The new problem for the transform U(a,t) U ( a , t ) is


A) kUt+α2U=kαu0,U(α,0) =0k \frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
B) kUtα2U=kαu0,U(α,0) =0k \frac { \partial U } { \partial t } - \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
C) Ut+kα2U=kαψ0,U(α,0) =0\frac { \partial U } { \partial t } + k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
D) Utkα2U=kαψ0,U(α,0) =0\frac { \partial U } { \partial t } - k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
E) Ut+α2U=kαu0,U(α,0) =0\frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions