Solved

In the Previous Problem, Apply the Laplace Transform U(x,s)=L{u(x,t)}U ( x , s ) = \mathcal { L } \{ u ( x , t ) \}

Question 23

Multiple Choice

In the previous problem, apply the Laplace transform. The resulting equation for U(x,s) =L{u(x,t) }U ( x , s ) = \mathcal { L } \{ u ( x , t ) \} is


A) 2Ux2+s2U=sf(x) \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = - s f ( x )
B) 2Ux2+s2U=f(x) \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = f ( x )
C) 2Ux2s2U=f(x) \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - f ( x )
D) 2Ux2s2U=sf(x) \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = s f ( x )
E) 2Ux2s2U=sf(x) \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - s f ( x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions