Solved

The Fourier Integral Representation of a Function F Is Given f(x)cos(αx)dx\int _ { - \infty } ^ { \infty } f ( x ) \cos ( \alpha x ) d x

Question 24

Multiple Choice

The Fourier integral representation of a function f is given by


A) f(x) cos(αx) dx\int _ { - \infty } ^ { \infty } f ( x ) \cos ( \alpha x ) d x
B) f(x) sin(αx) dx\int _ { - \infty } ^ { \infty } f ( x ) \sin ( \alpha x ) d x
C) 0[f(t) cos(αt) dtcos(αx) +f(t) sin(αt) dtsin(αx) ]dα\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha
D) 0[f(t) cos(αt) dtcos(αx) +f(t) sin(αt) dtsin(αx) ]dα/π\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha / \pi
E) 0[f(t) cos(αt) dtcos(αx) +f(t) sin(αt) dtsin(αx) ]dα/(2π) \int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha / ( 2 \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions