Solved

The Complementary Error Function Is Defined as
A) erfc(x)=0xeu2du\operatorname { erfc } ( x ) = \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u

Question 20

Multiple Choice

The complementary error function is defined as


A) erfc(x) =0xeu2du\operatorname { erfc } ( x ) = \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u
B) erfc(x) =0eu2du\operatorname { erfc } ( x ) = \int _ { 0 } ^ { \infty } e ^ { - u ^ { 2 } } d u
C) erfc(x) =20xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \pi
D) erfc(x) =2xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { x } ^ { \infty } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
E) erfc(x) =20xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions