Solved

Consider the Problem of a Vibrating String, Tightly-Stretched Between x=0x = 0

Question 21

Multiple Choice

Consider the problem of a vibrating string, tightly-stretched between x=0x = 0 and x=1x = 1 , with a fixed initial position, f(x) f ( x ) , and zero initial velocity. The mathematical problem for the deflection, u(x,t) u ( x , t ) , is ( with u(0,t) =0,u(1,t) =0) ( \text { with } u ( 0 , t ) = 0 , u ( 1 , t ) = 0 )


A) 2ux2=ut,u(x,0) =f(x) ,ut(x,0) =0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
B) 2ux2+ut=0,u(x,0) =f(x) ,ut(x,0) =0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
C) 2ux2=2ut2,u(x,0) =f(x) ,ut(x,0) =0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
D) 2ux2+2ut2=0,u(x,0) =f(x) ,ut(x,0) =0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
E) 2ux2=2ut2,u(x,0) =0,ut(x,0) =f(x) \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = f ( x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions