Solved

In the Previous Problem, After Separating Variables, the Resulting Problems rRR+λrR=0,R(0)r R ^ { \prime \prime } - R ^ { \prime } + \lambda r R = 0 , R ( 0 )

Question 26

Multiple Choice

In the previous problem, after separating variables, the resulting problems are


A) rRR+λrR=0,R(0) r R ^ { \prime \prime } - R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2) =0,Z+λZ=0,Z(3) =0R ( 2 ) = 0 , Z ^ { \prime \prime } + \lambda Z = 0 , Z ( 3 ) = 0
B) rR+RλrR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } - \lambda r R = 0 , R ( 0 ) is bounded, R(2) =0,ZλZ=0,Z(3) =0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
C) rRRλrR=0,R(0) r R ^ { \prime \prime } - R ^ { \prime } - \lambda r R = 0 , R ( 0 ) is bounded, R(2) =0,ZλZ=0,Z(3) =0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
D) rR+R+λrR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2) =0,ZλZ=0,Z(3) =0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
E) rR+R+λrR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2) =0,Z+λZ=0,Z(3) =0R ( 2 ) = 0 , Z ^ { \prime \prime } + \lambda Z = 0 , Z ( 3 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions