Solved

The Laplacian in Polar Coordinates Is
A) B) C) D)

Question 23

Multiple Choice

The Laplacian in polar coordinates is


A) 2ur2+1r2ur+1r2uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
B) 2ur2+1rur+1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
C) 2ur21rur+1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
D) 2ur2+1rur1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
E) 2ur21rur1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions