Solved

The Solution Of r2R+rR+λR=0,R(0)=0,R(1)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 0 ) = 0 , R ( 1 ) = 0

Question 24

Multiple Choice

The solution of r2R+rR+λR=0,R(0) =0,R(1) =0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 0 ) = 0 , R ( 1 ) = 0 is


A) λ=nπ,R=sin(nπlnr) \lambda = n \pi , R = \sin ( n \pi \ln r )
B) λ=(nπ) 2,R=sin(nπlnr) \lambda = ( n \pi ) ^ { 2 } , R = \sin ( n \pi \ln r )
C) λ=(nπ) 2,R=sin(nπlnr) +cos(nπlnr) \lambda = ( n \pi ) ^ { 2 } , R = \sin ( n \pi \ln r ) + \cos ( n \pi \ln r )
D) λ=nπ,R=sin(nπlnr) cos(nπlnr) \lambda = n \pi , R = \sin ( n \pi \ln r ) - \cos ( n \pi \ln r )
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions