Consider the equation uxx−utt=0 with conditions dxdu(0,t) =0,dxdu=(L,t) =0,u(x,0) =f(x) ,dtdu(0) =0 . When separating variables with u(x,t) =X(x) T(t) , the resulting problems for X,T are
A) X′′+λX=0,X′(0) =0,X′(L) =0,T′′+λT=0,T(0) =0 B) X′′−λX=0,X′(0) =0,X′(L) =0,T′′+λT=0,T′(0) =0 C) X′′+λX=0,X′(0) =0,X′(L) =0,T′′+λT=0,T′(0) =0 D) X′′+λX=0,X′(0) =0,X′(L) =0,T′′−λT=0,T′(0) =0 E) X′′+λX=0,X′(0) =0,X′(L) =0,T′′+λT=0,T(0) =f(x)
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge