Solved

In the Problem , the Eigenvalues and Eigenfunctions of the Underlying Homogeneous Problem

Question 26

Multiple Choice

In the problem 2ux2+xet=ut,u(0,t) =0,u(L,t) =0,u(x,0) =0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + x e ^ { t } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( L , t ) = 0 , u ( x , 0 ) = 0 , the eigenvalues and eigenfunctions of the underlying homogeneous problem are


A) λ=n2,X=sin(nx) \lambda = n ^ { 2 } , X = \sin ( n x )
B) λ=n2,X=cos(nx) \lambda = n ^ { 2 } , X = \cos ( n x )
C) λ=n2π2/L2,X=sin(nπx/L) \lambda = n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } , X = \sin ( n \pi x / L )
D) λ=n2π2/L2,X=cos(nπx/L) \lambda = n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } , X = \cos ( n \pi x / L )
E) λ=n2π2,X=sin(nπx) \lambda = n ^ { 2 } \pi ^ { 2 } , X = \sin ( n \pi x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions