Solved

The Solution of the Previous Three Problems Is n=1cnXn(x)eλnkt\sum _ { n = 1 } ^ { \infty } c _ { n } X _ { n } ( x ) e ^ { - \lambda _ { n } k t }

Question 28

Multiple Choice

The solution of the previous three problems is n=1cnXn(x) eλnkt\sum _ { n = 1 } ^ { \infty } c _ { n } X _ { n } ( x ) e ^ { - \lambda _ { n } k t } , where XnX _ { n } and λn\lambda _ { n } are given in the previous problem and


A) cn=0Lf(x) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) d x
B) cn=0Lf(x) Xn(x) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x
C) cn=0Lf(x) Xn(x) dx/0LXn(x) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x / \int _ { 0 } ^ { L } X _ { n } ( x ) d x
D) cn=0LXn2(x) dx/0Lf(x) Xn(x) dxc _ { n } = \int _ { 0 } ^ { L } X _ { n } ^ { 2 } ( x ) d x / \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x
E) cn=0Lf(x) Xn(x) dx/0LXn2(x) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) X _ { n } ( x ) d x / \int _ { 0 } ^ { L } X _ { n } ^ { 2 } ( x ) d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions