Solved

In the Previous Two Problems, the Solution For uu Takes the Form
A)

Question 31

Multiple Choice

In the previous two problems, the solution for uu takes the form


A) u(x,t) =n1un(t) sin(nπx/L) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin ( n \pi x / L )
B) u(x,t) =n=1un(t) cos(nπx) u ( x , t ) = \sum _ { n = 1 } ^ { \infty } u _ { n } ( t ) \cos ( n \pi x )
C) u(x,t) =n1un(t) sin(n2π2x2/L2) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin \left( n ^ { 2 } \pi ^ { 2 } x ^ { 2 } / L ^ { 2 } \right)
D) u(x,t) =n1un(t) cos(n2π2x2/L2) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \cos \left( n ^ { 2 } \pi ^ { 2 } x ^ { 2 } / L ^ { 2 } \right)
E) u(x,t) =n1un(t) sin(nπx) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } u _ { n } ( t ) \sin ( n \pi x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions