Solved

The Fourier Series of the Function f(x)=x2f ( x ) = x ^ { 2 }

Question 28

Multiple Choice

The Fourier series of the function f(x) =x2f ( x ) = x ^ { 2 } on [1,1][ - 1,1 ] is


A) n14(1) nsin(nπx) /(n2π2) +n14(1) ncos(nπx) /(n2π2) \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right) + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
B) n=14(1) nsin(nπx) /(n2π2) \sum _ { n = 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
C) n=14(1) ncos(nπx) /(n2π2) \sum _ { n = 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) 1/3+n14(1) nsin(nπx) /(n2π2) 1 / 3 + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
E) 1/3+n14(1) ncos(nπx) /(n2π2) 1 / 3 + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions