Solved

Using the Eigenfunctions of the Previous Problem, the Fourier-Legendre Series f(x)f ( x )

Question 29

Multiple Choice

Using the eigenfunctions of the previous problem, the Fourier-Legendre series for the function f(x) f ( x ) is n=1cnPn(x) \sum _ { n = 1 } ^ { \infty } c _ { n } P _ { n } ( x ) , where


A) cn=(2n+1) 11xf(x) Pn(x) dxc _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } x f ( x ) P _ { n } ( x ) d x
B) cn=(2n+1) 11f(x) Pn(x) dxc _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x
C) cn=(2n+1) 11f(x) Pn(x) dx/2c _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x / 2
D) cn=(2n1) 11f(x) Pn(x) dx/2c _ { n } = ( 2 n - 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x / 2
E) cn=(2n1) 11xf(x) Pn(x) dxc _ { n } = ( 2 n - 1 ) \int _ { - 1 } ^ { 1 } x f ( x ) P _ { n } ( x ) d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions