Solved

When the Laplace Transform Is Applied to the System dxdt=3xydydt=x+yx(0)=2,y(0)=1\begin{array} { l } \frac { d x } { d t } = 3 x - y \\\frac { d y } { d t } = x + y \\x ( 0 ) = 2 , y ( 0 ) = 1\end{array}

Question 22

Multiple Choice

When the Laplace transform is applied to the system dxdt=3xydydt=x+yx(0) =2,y(0) =1\begin{array} { l } \frac { d x } { d t } = 3 x - y \\\frac { d y } { d t } = x + y \\x ( 0 ) = 2 , y ( 0 ) = 1\end{array} the resulting transformed system is


A) sX=3XY2,sY1=X+Ys X = 3 X - Y - 2 , s Y - 1 = X + Y
B) sX2=3XY,sY=X+Y1s X - 2 = 3 X - Y , s Y = X + Y - 1
C) sX=3XY2,sY=X+Y1s X = 3 X - Y - 2 , s Y = X + Y - 1
D) sX2=3XY,sY1=X+Ys X - 2 = 3 X - Y , s Y - 1 = X + Y
E) sX+2=3XY,sY+1=X+Ys X + 2 = 3 X - Y , s Y + 1 = X + Y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions