Solved

When the Laplace Transform Is Applied to the System dxdt=4xydydt=2x+yx(0)=1,y(0)=0\begin{array} { l } \frac { d x } { d t } = 4 x - y \\\frac { d y } { d t } = 2 x + y \\x ( 0 ) = 1 , y ( 0 ) = 0\end{array}

Question 27

Multiple Choice

When the Laplace transform is applied to the system dxdt=4xydydt=2x+yx(0) =1,y(0) =0\begin{array} { l } \frac { d x } { d t } = 4 x - y \\\frac { d y } { d t } = 2 x + y \\x ( 0 ) = 1 , y ( 0 ) = 0\end{array} the resulting transformed system is


A) sX=4XY,sY1=2X+Ys X = 4 X - Y , s Y - 1 = 2 X + Y
B) sX=4XY1,sY=2X+Ys X = 4 X - Y - 1 , s Y = 2 X + Y
C) sX=4XY,sY=2X+Y1s X = 4 X - Y , s Y = 2 X + Y - 1
D) sX=4XY,sY=2X+Ys X = 4 X - Y , s Y = 2 X + Y
E) sX1=4XY,sY=2X+Ys X - 1 = 4 X - Y , s Y = 2 X + Y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions