Solved

A Uniform Beam of Length L Has a Concentrated Load w0w _ { 0 }

Question 30

Multiple Choice

A uniform beam of length L has a concentrated load, w0w _ { 0 } , at x=L/2x = L / 2 . It is embedded at the left end and free at the right end. The correct initial value problem for the vertical deflection, y(x) y ( x ) , at a distance x from the embedded end is


A) ELy=w0δ(xL/2) ,y(0) =0,y(0) =0,y(L) =0,y(L) =0E L y ^ { \prime \prime \prime \prime } = w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
B) y=EIw0δ(xL/2) ,y(0) =0,y(0) =0,y(L) =0,y(L) =0y ^ { \prime \prime \prime \prime } = E I w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
C) ELy=w0δ(xL/2) ,y(0) =0,y(0) =0,y(L) =0,y(L) =0E L y ^ { \prime \prime } = w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
D) y=EIw0δ(xL/2) ,y(0) =0,y(0) =0,y(L) =0,y(L) =0y ^ { \prime \prime } = E I w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0
E) ELy=w0δ(x+L/2) ,y(0) =0,y(0) =0,y(L) =0,y(L) =0E L y ^ { \prime \prime \prime \prime } = w _ { 0 } \delta ( x + L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions