Solved

In the Previous Problem, a Second Solution Is
A) y2=exy _ { 2 } = e ^ { x }

Question 19

Multiple Choice

In the previous problem, a second solution is


A) y2=exy _ { 2 } = e ^ { x }
B) y2=xex/x2dxy _ { 2 } = x \int e ^ { x } / x ^ { 2 } d x
C) y=1+k1ckxk, where ck=(k1) /(k(k+1) ) y = 1 + \sum _ { k - 1 } ^ { \infty } c _ { k } x ^ { k } , \text { where } c _ { k } = ( k - 1 ) / ( k ( k + 1 ) )
D) y=1+k=1ckxk, where ck=1/k2y = 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } , \text { where } c _ { k } = 1 / k ^ { 2 }
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions