Solved

A Power Series Solution About x=0x = 0 Of the Differential Equation

Question 16

Multiple Choice

A power series solution about x=0x = 0 of the differential equation yy=0y ^ { \prime \prime } - y = 0 is


A) y=c0k=0x2k/(2k) !+c1k=0x2k+1/(2k+1) !y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 ) !
B) y=c0k=0x2k/(2k) +c1k=0x2k+1/(2k+1) y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 )
C) y=c0k0x2k/(2k) 2+c1k0x2k+1/(2k+1) 2y = c _ { 0 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ^ { 2 } + c _ { 1 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 ) ^ { 2 }
D) y=c0k=0x2k/(2k) !+c1k0x2k1/(2k1) !y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k - 1 } / ( 2 k - 1 ) !
E) y=c0k=0x2k/(2k) +c1k=0x2k1/(2k1) y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k - 1 } / ( 2 k - 1 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions