Solved

In the Previous Problem, a Series Solution Corresponding to the Indicial

Question 21

Multiple Choice

In the previous problem, a series solution corresponding to the indicial root r=1/2r = 1 / 2 is y=x1/2{1+k=1ckxk}y = x ^ { 1 / 2 } \left\{ 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } \right\} , where


A) ck=(2) k/[k357(2k3) ]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 3 \cdot 5 \cdot 7 \cdots ( 2 k - 3 ) ]
B) ck=(2) k/[k135(2k3) ]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 1 \cdot 3 \cdot 5 \cdots ( 2 k - 3 ) ]
C) ck=2k/[k579(2k+1) ]c _ { k } = - 2 ^ { k } / [ k \mid 5 \cdot 7 \cdot 9 \cdots ( 2 k + 1 ) ]
D) ck=(2) k/[k!(2k+3) !]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( 2 k + 3 ) ! ]
E) ck=(2) k/[k579(2k+3) ]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 5 \cdot 7 \cdot 9 \cdots ( 2 k + 3 ) ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions