Solved

The Solution of the Differential Equation x2y5xy+5y=0x ^ { 2 } y ^ { \prime \prime } - 5 x y ^ { \prime } + 5 y = 0

Question 40

Multiple Choice

The solution of the differential equation x2y5xy+5y=0x ^ { 2 } y ^ { \prime \prime } - 5 x y ^ { \prime } + 5 y = 0 is


A) y=c1x+c2x5y = c _ { 1 } x + c _ { 2 } x ^ { 5 }
B) y=c1x2cos(lnx) +c2x2sin(lnx) y = c _ { 1 } x ^ { 2 } \cos ( \ln x ) + c _ { 2 } x ^ { 2 } \sin ( \ln x )
C) y=c1xcos(2lnx) +c2xsin(2lnx) y = c _ { 1 } x \cos ( 2 \ln x ) + c _ { 2 } x \sin ( 2 \ln x )
D) y=c1x(5+5) /2+c2x(55) /2y = c _ { 1 } x ^ { ( 5 + \sqrt { 5 } ) / 2 } + c _ { 2 } x ^ { ( 5 - \sqrt { 5 } ) / 2 }
E) y=c1e2xcosx+c2xe2xsinxy = c _ { 1 } e ^ { 2 x } \cos x + c _ { 2 } x e ^ { 2 x } \sin x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions