Solved

The Solution of the Equation for the Differential Equation x2y2xy+2y=0x ^ { 2 } y ^ { \prime \prime } - 2 x y ^ { \prime } + 2 y = 0

Question 15

Multiple Choice

The solution of the equation for the differential equation x2y2xy+2y=0x ^ { 2 } y ^ { \prime \prime } - 2 x y ^ { \prime } + 2 y = 0 is


A) y=c1xcos(lnx) +c2xsin(lnx) y = c _ { 1 } x \cos ( \ln x ) + c _ { 2 } x \sin ( \ln x )
B) y=c1x1/2cos(3lnx/2) +c2x1/2sin(3lnx/2) y = c _ { 1 } x ^ { 1 / 2 } \cos ( \sqrt { 3 } \ln x / 2 ) + c _ { 2 } x ^ { 1 / 2 } \sin ( \sqrt { 3 } \ln x / 2 )
C) y=c1x(1+3) /2+c2x(13) /2y = c _ { 1 } x ^ { ( 1 + \sqrt { 3 } ) / 2 } + c _ { 2 } x ^ { ( 1 - \sqrt { 3 } ) / 2 }
D) y=c1x+c2xlnxy = c _ { 1 } x + c _ { 2 } x \ln x
E) y=c1x+c2x2y = c _ { 1 } x + c _ { 2 } x ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions