Solved

Two Linearly Independent Solutions of the Differential Equation y4y+4y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 4 y = 0

Question 23

Multiple Choice

Two linearly independent solutions of the differential equation y4y+4y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 4 y = 0 are


A) y1=e2x,y2=e2xy _ { 1 } = e ^ { 2 x } , y _ { 2 } = e ^ { 2 x }
B) y1=e2x,y2=xe2xy _ { 1 } = e ^ { 2 x } , y _ { 2 } = x e ^ { 2 x }
C) y1=e2x,y2=e2xy _ { 1 } = e ^ { 2 x } , y _ { 2 } = e ^ { - 2 x }
D) y1=e2x,y2=xe2xy _ { 1 } = e ^ { - 2 x } , y _ { 2 } = x e ^ { - 2 x }
E) y1=e2x,y2=xe2xy _ { 1 } = e ^ { - 2 x } , y _ { 2 } = x e ^ { 2 x }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions