Solved

Evaluate the Line Integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r }

Question 218

Short Answer

Evaluate the line integral CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F(x,y,z)=(y+z)ix2j4y2k\mathbf { F } ( x , y , z ) = ( y + z ) \mathbf { i } - x ^ { 2 } \mathbf { j } - 4 y ^ { 2 } \mathbf { k } , and the curve CC is given by the vector function r(t)=ti+t2j+t4k,0t1\mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + t ^ { 4 } \mathbf { k } , \quad 0 \leq t \leq 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions