Solved

Let w=x3+y3+z3w = x ^ { 3 } + y ^ { 3 } + z ^ { 3 }

Question 69

Short Answer

Let w=x3+y3+z3w = x ^ { 3 } + y ^ { 3 } + z ^ { 3 } , x=s+tx = s + t , y=s2t2y = s ^ { 2 } - t ^ { 2 } and z=stz = s t . Use the chain rule to show that s(δwδs)+t(δwδt)=3x3+6y3+6z3s \left( \frac { \delta w } { \delta s } \right) + t \left( \frac { \delta w } { \delta t } \right) = 3 x ^ { 3 } + 6 y ^ { 3 } + 6 z ^ { 3 } .

Correct Answer:

Answered by ExamLex AI

Answered by ExamLex AI

To show that s \left( \frac { \delta w }...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions