Solved

If w=f(x,y,z)w = f ( x , y , z )

Question 72

Short Answer

If w=f(x,y,z)w = f ( x , y , z ) has continuous partial derivatives, x=s+tx = s + t , y=s2t2y = s ^ { 2 } - t ^ { 2 } , and z=stz = s t , show that sδwδs+tδwδt=xδwδx+2yδwδy+2zδwδzs \frac { \delta w } { \delta s } + t \frac { \delta w } { \delta t } = x \frac { \delta w } { \delta x } + 2 y \frac { \delta w } { \delta y } + 2 z \frac { \delta w } { \delta z }

Correct Answer:

Answered by ExamLex AI

Answered by ExamLex AI

To show that s \frac { \partial w } { \p...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions