Solved

Find the Unit Tangent Vector T(t) to the Curve R (t21,3t2t4,2t)\left( t ^ { 2 } - 1,3 t ^ { 2 } - t ^ { 4 } , \frac { 2 } { t } \right)

Question 31

Multiple Choice

Find the unit tangent vector T(t) to the curve r (t) = (t21,3t2t4,2t) \left( t ^ { 2 } - 1,3 t ^ { 2 } - t ^ { 4 } , \frac { 2 } { t } \right) when t = 1.


A) (13,13,13) \left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , - \frac { 1 } { \sqrt { 3 } } \right)

B) (13,13,13) \left( \frac { 1 } { \sqrt { 3 } } , - \frac { 1 } { \sqrt { 3 } } , - \frac { 1 } { \sqrt { 3 } } \right)
C) (0,1,0) ( 0,1,0)
D) (0,0,1) ( 0,0,1 )
E) (13,13,13) \left( \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right)
F) (12,0,12) \left( \frac { 1 } { \sqrt { 2 } } , 0 , \frac { 1 } { \sqrt { 2 } } \right)

G) (12,12,0) \left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , 0 \right)

H) (12,12,12) \left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions