Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests
Exam 1: Instruction and Data Collection47 Questions
Exam 2: Presenting Data in Tables and Charts277 Questions
Exam 3: Numerical Descriptive Measures139 Questions
Exam 4: Basic Probability137 Questions
Exam 5: Some Important Discrete Probability Distributions188 Questions
Exam 6: The Normal Distribution and Other Continuous Distributions164 Questions
Exam 7: Sampling and Sampling Distributions187 Questions
Exam 8: Confidence Interval Estimation173 Questions
Exam 9: Fundamentals of Hypothesis Testing: One-Sample Tests146 Questions
Exam 10: Two-Sample Tests190 Questions
Exam 11: Analysis of Variance127 Questions
Exam 12: Chi-Square Tests and Nonparametric Tests174 Questions
Exam 13: Simple Linear Regression198 Questions
Exam 14: Introduction to Multiple Regression215 Questions
Exam 15: Multiple Regression Model Building101 Questions
Exam 16: Time-Series Analysis and Index Numbers133 Questions
Exam 17: Statistical Applications in Quality Management132 Questions
Exam 18: Data Analysis Overview52 Questions
Select questions type
In instances in which there is insufficient evidence to reject the null hypothesis, you must make it clear that this does not prove that the null hypothesis is true.
(True/False)
4.7/5
(37)
TABLE 9-7
A major home improvement store conducted its biggest brand recognition campaign in the company's history. A series of new television advertisements featuring well-known entertainers and sports figures were launched. A key metric for the success of television advertisements is the proportion of viewers who "like the ads a lot." A study of 1,189 adults who viewed the ads reported that 230 indicated that they "like the ads a lot." The percentage of a typical television advertisement receiving the "like the ads a lot" score is believed to be 22%. Company officials wanted to know if there is evidence that the series of television advertisements are less successful than the typical ad at a 0.01 level of significance.
-Referring to Table 9-7, what will be the p-value if these data were used to perform a two-tail test?
(Short Answer)
4.8/5
(33)
TABLE 9-7
A major home improvement store conducted its biggest brand recognition campaign in the company's history. A series of new television advertisements featuring well-known entertainers and sports figures were launched. A key metric for the success of television advertisements is the proportion of viewers who "like the ads a lot." A study of 1,189 adults who viewed the ads reported that 230 indicated that they "like the ads a lot." The percentage of a typical television advertisement receiving the "like the ads a lot" score is believed to be 22%. Company officials wanted to know if there is evidence that the series of television advertisements are less successful than the typical ad at a 0.01 level of significance.
-Referring to Table 9-7, the lowest level of significance at which the null hypothesis can be rejected is ________.
(Short Answer)
4.8/5
(37)
TABLE 9-4
A drug company is considering marketing a new local anesthetic. The effective time of the anesthetic the drug company is currently producing has a normal distribution with an mean of 7.4 minutes with a standard deviation of 1.2 minutes. The chemistry of the new anesthetic is such that the effective time should be normally distributed with the same standard deviation, but the mean effective time may be lower. If it is lower, the drug company will market the new anesthetic; otherwise, they will continue to produce the older one. A sample of size 36 results in a sample mean of 7.1. A hypothesis test will be done to help make the decision.
-Referring to Table 9-4, if the level of significance had been chosen as 0.05, the company would market the new anesthetic.
(True/False)
4.8/5
(39)
A sample is used to obtain a 95% confidence interval for the mean of a population. The confidence interval goes from 15 to 19. If the same sample had been used to test the null hypothesis that the mean of the population is equal to 20 versus the alternative hypothesis that the mean of the population differs from 20, the null hypothesis could be rejected at a level of significance of 0.02.
(True/False)
4.9/5
(42)
A sample is used to obtain a 95% confidence interval for the mean of a population. The confidence interval goes from 15 to 19. If the same sample had been used to test the null hypothesis that the mean of the population is equal to 20 versus the alternative hypothesis that the mean of the population differs from 20, the null hypothesis could be rejected at a level of significance of 0.05.
(True/False)
4.8/5
(36)
Showing 141 - 146 of 146
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)