Exam 6: Propositional Logic

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Given the argument: N ≡ D / D ⊃ ∼ N // ∼ N This argument is:

(Multiple Choice)
4.8/5
(36)

Proposition 2B Given the following proposition: [(A ⊃ Y) ≡ (B ⊃ ∼X)] ∨ ∼[(B • ∼ X) ≡ (Y • A)] -Given that A and B are true and X and Y are false, determine the truth value of Proposition 2B.

(True/False)
4.9/5
(33)

Suppose an indirect truth table is constructed for an argument, and the truth table requires more than one line. If no contradiction is obtained on the first line, then:

(Multiple Choice)
4.9/5
(38)

?P ? ?D DP\frac { \sim \mathrm { D } } { \sim \mathrm { P } }

(Multiple Choice)
4.8/5
(36)

If Baylor's hiring new faculty implies that Rice increases enrollment, then Williams raises tuition if Smith expands course offerings.

(Multiple Choice)
4.8/5
(38)

?G ? ?B B\underline { B } G\sim \mathrm { G }

(Multiple Choice)
4.9/5
(34)

?Q HQH\frac { \mathrm { H } \supset \sim \mathrm { Q } } { \mathrm { H } }

(Multiple Choice)
4.9/5
(36)

?M MGG\frac { \mathrm { M } \supset \sim \mathrm { G } } { \mathrm { G } }

(Multiple Choice)
4.7/5
(42)

If a group of statements are inconsistent, this means:

(Multiple Choice)
4.8/5
(30)

Given the statements: Q ⊃ (N ∨ S) / N ⊃ (L ⊃ B) / (S ∨ E) ⊃ (Q ⊃ B) / Q ≡ ∼ B These statements are:

(Multiple Choice)
4.8/5
(26)

G ? ?R GR\frac{\mathrm{G}}{\sim \mathrm{R}}

(Multiple Choice)
4.9/5
(30)

?D DLL\frac { \mathrm { D } \supset \sim \mathrm { L } } { \mathrm { L } }

(Multiple Choice)
4.9/5
(31)

?N ? A NA\frac { \mathrm { N } } { \mathrm { A } }

(Multiple Choice)
5.0/5
(38)

If Tissot has luminous hands, then if either Rado advertises a calendar model or Fossil is water resistant, then Gucci features stainless steel.

(Multiple Choice)
4.8/5
(30)

Given the pair of statements: G ∨ ∼ H and H ∨ ∼ G These statements are:

(Multiple Choice)
4.8/5
(36)

When the disjunctive premise of a dilemma is of the form p ∨ ∼p, then it is impossible to:

(Multiple Choice)
4.8/5
(40)

?G ? K GK\frac { \sim \mathrm { G } } { \mathrm { K } }

(Multiple Choice)
4.7/5
(35)

Given the pair of statements: D • ∼ R and R • ∼ D These statements are:

(Multiple Choice)
4.7/5
(33)

According to De Morgan's rule, ∼(P ∨ Q) is logically equivalent to:

(Multiple Choice)
4.8/5
(47)

Proposition 1A Given the following proposition: [A ⊃ ∼ (B • Y)] ≡ ∼[B ⊃ (X • ∼ A)] -In Proposition 1A, the main operator is a:

(Multiple Choice)
5.0/5
(32)
Showing 181 - 200 of 354
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)