Exam 1: The Foundations: Logic and Proofs

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

P(x, y) is a predicate and the universe for the variables x and y is {1, 2, 3}. Suppose P(1, 3), P(2, 1), P(2, 2), P(2, 3), P(3, 1), P(3, 2) are true, and P(x, y) is false otherwise. Determine whether the following statements are true. - xyP(x,y)\forall x \exists y P ( x , y )

(True/False)
4.8/5
(31)

(pq)(q¬p)(pq)( p \rightarrow q ) \wedge ( q \rightarrow \neg p ) \wedge ( p \vee q )

(Short Answer)
4.9/5
(34)

Match the statement in symbols with one of the English statements in this list: 1. Some freshmen are math majors. 2. Every math major is a freshman. 3. No math major is a freshman. - x(¬M(x)¬F(x))\forall x ( \neg M ( x ) \vee \neg F ( x ) )

(Short Answer)
4.9/5
(28)

Show that the premises "Every student in this class passed the first exam" and "Alvina is a student in this class" imply the conclusion "Alvina passed the first exam".

(Short Answer)
5.0/5
(32)

P(x, y) means x+2y=xy"“ x + 2 y = x y " where x and y are integers. Determine the truth value of the statement. - xyP(x,y)\exists x \forall y P ( x , y )

(True/False)
4.8/5
(34)

Match the English statement with all its equivalent symbolic statements in this list: 1. xyT(x,y)\exists x \forall y T ( x , y )\quad \quad \quad 2. yxT(x,y)\exists y \forall x T ( x , y )\quad \quad \quad 3. xyT(x,y)\forall x \exists y T ( x , y ) 4. ¬xyT(x,y)\neg \exists x \exists y T ( x , y )\quad \quad 5. xy¬T(x,y)\exists x \forall y \neg T ( x , y )\quad \quad \quad 6. yxT(x,y)\forall y \exists x T ( x , y ) 7. yx¬T(x,y)\exists y \forall x \neg T ( x , y )\quad \quad 8. ¬xyT(x,y)\neg \forall x \exists y T ( x , y )\quad \quad \quad 9. ¬yxT(x,y)\neg \exists y \forall x T ( x , y ) 10. ¬xy¬T(x,y)\neg \forall x \exists y \neg T ( x , y )\quad 11. ¬x¬y¬T(x,y)\neg \forall x \neg \forall y \neg T ( x , y )\quad 12. xy¬T(x,y)\forall x \exists y \neg T ( x , y ) -There is a course that no students are taking.

(Short Answer)
4.9/5
(35)

Show that the premise "My daughter visited Europe last week" implies the conclusion "Someone visited Europe last week".

(Short Answer)
4.9/5
(45)

P(x, y) means "x and y are real numbers such that x+2y=5"x + 2 y = 5 " Determine whether the statement is true. - xyP(x,y)\forall x \exists y P ( x , y )

(True/False)
4.8/5
(30)

write the negation of the statement in good English. Don't write "It is not true that . . . ." -Some bananas are yellow.

(Short Answer)
4.9/5
(34)

suppose the variable x represents people, and F(x):x is friendly T(x):x is tall A(x):x is angry. F ( x ) : x \text { is friendly } \quad T ( x ) : x \text { is tall } \quad A ( x ) : x \text { is angry. } Write the statement in good English. Do not use variables in your answer. - A( Bill). A ( \text { Bill). }

(Short Answer)
4.9/5
(39)

let F(A) be the predicate "A is a finite set" and S(A, B) be the predicate "A is contained in B". Suppose the universe of discourse consists of all sets. Translate the statement into symbols. -Every subset of a finite set is finite.

(Short Answer)
4.8/5
(39)

Determine whether the following two propositions are logically equivalent: p(¬qr),¬p¬(rq))p \rightarrow ( \neg q \wedge r ) , \neg p \vee \neg ( r \rightarrow q ) )

(Short Answer)
4.9/5
(42)

suppose the variable x represents students and y represents courses, and: F(x):x is a freshman A(x):x is a part-time student T(x,y):x is taking yF ( x ) : x \text { is a freshman } \quad A ( x ) : x \text { is a part-time student }\quad T ( x , y ) : x \text { is taking } y \text {. } Write the statement in good English without using variables in your answers. - F( Mikko )F ( \text { Mikko } )

(Short Answer)
4.7/5
(36)

suppose the variable x represents students and the variable y represents courses, and A(y):y is an advanced course F(x):x is a freshman T(x,y):x is taking yP(x,y):x passed yA ( y ) : y \text { is an advanced course } \quad F ( x ) : x \text { is a freshman } \quad T ( x , y ) : x \text { is taking } y \quad P ( x , y ) : x \text { passed } y \text {. } Write the statement using the above predicates and any needed quantifiers. -Every freshman passed calculus.

(Short Answer)
4.9/5
(31)

suppose the variables x and y represent real numbers, and L(x,y):x0 P(x):x is a prime number. Write the statement in good English without using any variables in your answer. - L(7,3)L ( 7,3 )

(Short Answer)
4.8/5
(26)

suppose the variable x represents students and y represents courses, and: M(y):yM ( y ) : y is a math course F(x):x\quad\quad F ( x ) : x is a freshman B(x):xB ( x ) : x is a full-time student T(x,y):x\quad T ( x , y ) : x is taking yy . Write the statement in good English without using variables in your answers. - xyT(x,y)\forall x \exists y T ( x , y )

(Short Answer)
5.0/5
(43)

Consider the following theorem: "if x and y are odd integers, then x + y is even". Give a direct proof of this theorem.

(Short Answer)
4.8/5
(31)

Prove that the proposition "if it is not hot, then it is hot" is equivalent to "it is hot".

(Short Answer)
4.7/5
(28)

Prove the following theorem: n is even if and only if n2 is even.

(Short Answer)
4.8/5
(35)

suppose the variable x represents students and y represents courses, and: F(x):x is a freshman A(x):x is a part-time student T(x,y):x is taking yF ( x ) : x \text { is a freshman } \quad A ( x ) : x \text { is a part-time student }\quad T ( x , y ) : x \text { is taking } y \text {. } Write the statement in good English without using variables in your answers. - ¬yT( Joe, y ). \neg \exists y T ( \text { Joe, } y \text { ). }

(Short Answer)
4.8/5
(33)
Showing 181 - 200 of 200
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)