Exam 1: The Foundations: Logic and Proofs

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Prove or disprove: For all real numbers x and y,xy=xyy , \lfloor x y \rfloor = \lfloor x \rfloor \cdot \lfloor y \rfloor

(True/False)
4.9/5
(37)

Using c for "it is cold" and r for "it is rainy", write "It is rainy if it is not cold" in symbols.

(Short Answer)
4.8/5
(38)

(Short Answer)
4.8/5
(35)

suppose the variable x represents students and y represents courses, and: F(x):x is a freshman A(x):x is a part-time student T(x,y):x is taking yF ( x ) : x \text { is a freshman } \quad A ( x ) : x \text { is a part-time student }\quad T ( x , y ) : x \text { is taking } y \text {. } Write the statement in good English without using variables in your answers. - x(A(x)¬F(x))\exists x ( A ( x ) \wedge \neg F ( x ) )

(Short Answer)
4.8/5
(30)

Match the English statement with all its equivalent symbolic statements in this list: 1. xyT(x,y)\exists x \forall y T ( x , y )\quad \quad \quad 2. yxT(x,y)\exists y \forall x T ( x , y )\quad \quad \quad 3. xyT(x,y)\forall x \exists y T ( x , y ) 4. ¬xyT(x,y)\neg \exists x \exists y T ( x , y )\quad \quad 5. xy¬T(x,y)\exists x \forall y \neg T ( x , y )\quad \quad \quad 6. yxT(x,y)\forall y \exists x T ( x , y ) 7. yx¬T(x,y)\exists y \forall x \neg T ( x , y )\quad \quad 8. ¬xyT(x,y)\neg \forall x \exists y T ( x , y )\quad \quad \quad 9. ¬yxT(x,y)\neg \exists y \forall x T ( x , y ) 10. ¬xy¬T(x,y)\neg \forall x \exists y \neg T ( x , y )\quad 11. ¬x¬y¬T(x,y)\neg \forall x \neg \forall y \neg T ( x , y )\quad 12. xy¬T(x,y)\forall x \exists y \neg T ( x , y ) -No student is taking all courses.

(Short Answer)
4.8/5
(32)

P(x, y) is a predicate and the universe for the variables x and y is {1, 2, 3}. Suppose P(1, 3), P(2, 1), P(2, 2), P(2, 3), P(3, 1), P(3, 2) are true, and P(x, y) is false otherwise. Determine whether the following statements are true. - xy(xy(P(x,y)P(y,x))\forall x \forall y ( x \neq y \rightarrow ( P ( x , y ) \vee P ( y , x ) )

(True/False)
4.8/5
(42)

assume that the universe for x is all people and the universe for y is the set of all movies. Write the English statement using the following predicates and any needed quantifiers: S(x,y):x saw yL(x,y):x liked yA(y):y won an award C(y):y is a comedy. S ( x , y ) : x \text { saw } y \quad L ( x , y ) : x \text { liked } y \quad A ( y ) : y \text { won an award } \quad C ( y ) : y \text { is a comedy. } -No comedy won an award.

(Short Answer)
4.9/5
(35)

Determine whether p(qr) is equivalent to (pq)rp \rightarrow ( q \rightarrow r ) \text { is equivalent to } ( p \rightarrow q ) \rightarrow r

(Short Answer)
4.8/5
(31)

suppose the variable x represents students and the variable y represents courses, and A(y):y is an advanced course S(x):x is a sophomore F(x):x is a freshman T(x,y):x is taking yA ( y ) : y \text { is an advanced course } \quad S ( x ) : x \text { is a sophomore } \quad F ( x ) : x \text { is a freshman } \quad T ( x , y ) : x \text { is taking } y \text {. } Write the statement using these predicates and any needed quantifiers. -Some freshman is taking an advanced course.

(Short Answer)
4.9/5
(35)

Prove that the equation 2x2+y2=142 x ^ { 2 } + y ^ { 2 } = 14 has no positive integer solutions.

(Essay)
5.0/5
(37)

suppose the variable x represents people, and F(x):x is friendly T(x):x is tall A(x):x is angry. F ( x ) : x \text { is friendly } \quad T ( x ) : x \text { is tall } \quad A ( x ) : x \text { is angry. } Write the statement using these predicates and any needed quantifiers. -Some tall angry people are friendly.

(Short Answer)
4.8/5
(34)

P(x, y) means x+2y=xy"“ x + 2 y = x y " where x and y are integers. Determine the truth value of the statement. - yP(3,y)\exists y P ( 3 , y )

(True/False)
4.9/5
(33)

relate to inhabitants of an island on which there are three kinds of people: knights who always tell the truth, knaves who always lie, and spies who can either tell the truth or lie. You encounter three people, A, B, and C. You know one of the three people is a knight, one is a knave, and one is a spy. Each of the three people knows the type of person each of the other two is. For each of these situations, if possible, determine whether there is a unique solution, list all possible solutions or state that there are no solutions. - A says "I am a knight," B says "I am a knave," and C says "I am not a knave." A \text { says "I am a knight," } B \text { says "I am a knave," and } C \text { says "I am not a knave." }

(Short Answer)
4.8/5
(36)

Write a proposition equivalent to pqp \rightarrow q using only p,q,¬p , q , \neg , and the connective \vee .

(Short Answer)
4.9/5
(33)

Match the English statement with all its equivalent symbolic statements in this list: 1. xyT(x,y)\exists x \forall y T ( x , y )\quad \quad \quad 2. yxT(x,y)\exists y \forall x T ( x , y )\quad \quad \quad 3. xyT(x,y)\forall x \exists y T ( x , y ) 4. ¬xyT(x,y)\neg \exists x \exists y T ( x , y )\quad \quad 5. xy¬T(x,y)\exists x \forall y \neg T ( x , y )\quad \quad \quad 6. yxT(x,y)\forall y \exists x T ( x , y ) 7. yx¬T(x,y)\exists y \forall x \neg T ( x , y )\quad \quad 8. ¬xyT(x,y)\neg \forall x \exists y T ( x , y )\quad \quad \quad 9. ¬yxT(x,y)\neg \exists y \forall x T ( x , y ) 10. ¬xy¬T(x,y)\neg \forall x \exists y \neg T ( x , y )\quad 11. ¬x¬y¬T(x,y)\neg \forall x \neg \forall y \neg T ( x , y )\quad 12. xy¬T(x,y)\forall x \exists y \neg T ( x , y ) -There is a course that all students are taking.

(Short Answer)
4.9/5
(40)

suppose the variable x represents students and y represents courses, and: U(y): y is an upper-level course M(y): y is a math course F(x): x is a freshman B(x): x is a full-time student T(x, y): student x is taking course y. Write the statement using these predicates and any needed quantifiers. -No math course is upper-level.

(Short Answer)
5.0/5
(29)

What is wrong with the following "proof" that -3=3 , using backward reasoning? Assume that -3=3 . Squaring both sides yields (-3)2=32 , or 9=9 . Therefore -3=3 .

(Essay)
4.9/5
(27)

Match the statement in symbols with one of the English statements in this list: 1. Some freshmen are math majors. 2. Every math major is a freshman. 3. No math major is a freshman. - ¬x(M(x)¬F(x))\neg \exists x ( M ( x ) \wedge \neg F ( x ) )

(Short Answer)
4.9/5
(39)

P(x, y) means x+2y=xy"“ x + 2 y = x y " where x and y are integers. Determine the truth value of the statement. - P(1,1)P ( 1 , - 1 )

(True/False)
4.8/5
(33)

Prove: if m and n are even integers, then mn is a multiple of 4.

(Short Answer)
4.9/5
(37)
Showing 81 - 100 of 200
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)