Exam 12: Boolean Algebra

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

In questions determine whether the statement is TRUE or FALSE. Assume that x, y, and z represent Boolean variables. - xˉz+xz=z\bar { x } z + x z = z

(True/False)
4.7/5
(39)

If f(w,x,y,z)=(xˉ+yzˉ)+(wˉx)f ( w , x , y , z ) = \overline { ( \bar { x } + y \bar { z } ) } + ( \bar { w } x ) , find f(0,0,0,0)f ( 0,0,0,0 )

(Short Answer)
4.9/5
(34)

Write x(y + 1) as a sum-of-products in the variables x and y.

(Short Answer)
4.9/5
(39)

When written as a sum of minterms (in the variables x and y ), x+xˉy=x + \bar { x } y =\underline{\quad\quad}

(Short Answer)
4.7/5
(33)

In questions mark each statement TRUE or FALSE. -  The circuit diagrams for xˉyˉ+xy and x+y produce the same output. \text { The circuit diagrams for } \overline { \bar { x } \bar { y } + \overline { x y } } \text { and } x + y \text { produce the same output. }

(True/False)
4.9/5
(40)

Let F(x,y,z)=yˉ(xˉz)+yx+yzˉF ( x , y , z ) = \bar { y } \overline { ( \bar { x } z ) } + y x + y \bar { z } Draw a logic gate diagram for F .

(Essay)
4.9/5
(39)

Find a Boolean function F:{0,1}2{0,1}F : \{ 0,1 \} ^ { 2 } \rightarrow \{ 0,1 \} such that F(0,0)=F(0,1)=F(1,1)=1F ( 0,0 ) = F ( 0,1 ) = F ( 1,1 ) = 1 and F(1,0)=0F ( 1,0 ) = 0 \text {. }

(Short Answer)
5.0/5
(44)

Give a reason for each step in the proof that x + xy = x is true in Boolean algebras. Your reasons should come from the following: associative laws for addition and multiplication, commutative laws for addition and multiplication, distributive law for multiplication over addition and distributive law for addition over multiplication, identity laws, unit property, zero property, and idempotent laws. x+xy=x1+xy=x(y+yˉ)+xy=(xy+xyˉ)+xy=xy+(xy+xyˉ)=(xy+xy)+xyˉ=xy+xyˉ=x+x y=x \cdot 1+x y=x(y+\bar{y})+x y=(x y+x \bar{y})+x y=x y+(x y+x \bar{y})=(x y+x y)+x \bar{y}=x y+x \bar{y}=x(y+yˉ)=x1=x.x(y+\bar{y})=x \cdot 1=x .

(Short Answer)
4.8/5
(36)

Using only the five properties associative laws, commutative laws, distributive laws, identity laws, and com- plement laws, prove that x x = x is true in all Boolean algebras.

(Short Answer)
4.8/5
(38)

Use a Karnaugh map to minimize the sum-of-products expression xyz+xyˉz+xˉyˉz+xyˉzˉ+xˉyz+xˉyˉzˉx y z + x \bar { y } z + \bar { x } \bar { y } z + x \bar { y } \bar { z } + \bar { x } y z + \bar { x } \bar { y } \bar { z }

(Short Answer)
4.8/5
(33)

Find the sum-of-products expansion of the Boolean function f(x,y)f ( x , y ) that is 1 if and only if either x=0x = 0 and y=1, or x=1 and y=0y = 1 \text {, or } x = 1 \text { and } y = 0 \text {. }

(Short Answer)
4.9/5
(42)

Write 1 as a sum-of-products in the variables x and y.

(Short Answer)
4.9/5
(37)

Write x+yx + y as a sum-of-products in the variables x and y .

(Short Answer)
4.9/5
(37)

Draw a logic gate diagram for the Boolean function F(x,y,z)=(xyˉ)+xzˉF ( x , y , z ) = \overline { ( x \bar { y } ) } + x \bar { z }

(Short Answer)
4.8/5
(42)

In questions determine whether the statement is TRUE or FALSE. Assume that x, y, and z represent Boolean variables. -x(x + y) = x + y x.

(True/False)
4.8/5
(31)

Give a reason for each step in the proof that x + x = x is true in Boolean algebras. Your reasons should come from the following: associative laws for addition and multiplication, commutative laws for addition and multiplication, distributive law for multiplication over addition and distributive law for addition over multiplication, identity laws, unit property, and zero property. x=x+0=x+(xxˉ)=(x+x)(x+xˉ)=(x+x)1=1(x+x)=x+xx = x + 0 = x + ( x \bar { x } ) = ( x + x ) ( x + \bar { x } ) = ( x + x ) \cdot 1 = 1 \cdot ( x + x ) = x + x

(Short Answer)
4.9/5
(34)

There are Boolean functions with 3 variables.

(Short Answer)
4.7/5
(38)

Write (x+yz)(xˉ+yz)( x + y z ) ( \bar { x } + y z ) as a sum-of-products in the variables x,y, and zx , y , \text { and } z

(Short Answer)
4.7/5
(34)

In questions determine whether the statement is TRUE or FALSE. Assume that x, y, and z represent Boolean variables. - z+xy=zˉ+xy\overline { z + x y } = \bar { z } + \overline { x y }

(True/False)
4.8/5
(31)

In questions mark each statement TRUE or FALSE. - xy=x+yx \downarrow y = \overline { x + y }

(True/False)
5.0/5
(31)
Showing 21 - 40 of 77
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)