Exam 12: Boolean Algebra

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

In questions determine whether the statement is TRUE or FALSE. Assume that x, y, and z represent Boolean variables. - x+xyˉ=xyz+x(zˉ+yˉz)x + x \bar { y } = x y z + x ( \bar { z } + \bar { y } z )

(True/False)
4.7/5
(30)

There are Boolean functions with 2 variables.

(Short Answer)
4.7/5
(38)

If f(w,x,y,z)=(xˉ+yzˉ)+(wˉx)f ( w , x , y , z ) = \overline { ( \bar { x } + y \bar { z } ) } + ( \bar { w } x ) find f(0,0,1,0)f ( 0,0,1,0 )

(Short Answer)
4.7/5
(39)

Find the sum-of-products expansion of the Boolean function f(x, y, z) that is 1 if and only if either x = z = 1 and y = 0, or x = 0 and y = z = 1.

(Short Answer)
5.0/5
(28)

In questions mark each statement TRUE or FALSE. -  Every Boolean function can be written using only the operators ,+, and \text { Every Boolean function can be written using only the operators }^ - , + \text {, and } \cdot \text {. }

(True/False)
4.7/5
(36)

Use the Quine-McCluskey method to simplify the Boolean expression xˉyz+xˉyzˉ+xˉyˉz+xˉyˉzˉ+xyz\bar { x } y z + \bar { x } y \bar { z } + \bar { x } \bar { y } z + \bar { x } \bar { y } \bar { z } + x y z

(Short Answer)
4.8/5
(36)

In questions mark each statement TRUE or FALSE. -  The circuit diagrams for x+xˉy and y+xyˉ produce the same output. \text { The circuit diagrams for } x + \bar { x } y \text { and } y + x \bar { y } \text { produce the same output. }

(True/False)
4.9/5
(40)

When written as a product of maxterms (in the variables x and y ), (x+y)z=( x + y ) z =\underline{\quad\quad}

(Essay)
4.8/5
(32)

Write xyˉzx \bar { y } z as a sum-of-products in the variables x,y, and zx , y , \text { and } z

(Short Answer)
4.9/5
(35)

In questions mark each statement TRUE or FALSE. - xy=xˉyˉ\overline { x \downarrow y } = \bar { x } \mid \bar { y }

(True/False)
4.9/5
(35)

Using only the five properties associative laws, commutative laws, distributive laws, identity laws, and complement laws, prove that x x = x is true in all boolean algebras .

(Essay)
5.0/5
(35)

A circuit is to be built that takes the numbers 0 through 9 as inputs (1 = 0001, 2 = 0010, . . . , 9 = 1001). Let F(w,x,y,z)F ( w , x , y , z ) be the Boolean function that produces an output of 1 if and only if the input is an even number. Find a Karnaugh map for F and use the map and don't care conditions to find a simple expression for F.

(Short Answer)
4.8/5
(34)

Use a Karnaugh map to minimize the sum-of-products expression xyz+xyˉz+xyˉzˉ+xˉyˉzx y z + x \bar { y } z + x \bar { y } \bar { z } + \bar { x } \bar { y } z

(Short Answer)
4.8/5
(37)

In questions determine whether the statement is TRUE or FALSE. Assume that x, y, and z represent Boolean variables. -x + x y z = x.

(True/False)
4.9/5
(39)

(a) Find a Boolean function f:{0,1}3{0,1}f : \{ 0,1 \} ^ { 3 } \rightarrow \{ 0,1 \} such that f(1,1,0)=1,f(0,1,1)=1,f ( 1,1,0 ) = 1 , f ( 0,1,1 ) = 1 , and f(x,y,z)=0f ( x , y , z ) = 0 otherwise. (b) Write ff using only . and \underline{\quad\quad}

(Short Answer)
4.7/5
(25)

Let F(x,y,z)=(yˉz)(x+xˉy)F ( x , y , z ) = \overline { ( \bar { y } z ) } ( x + \bar { x } y ) . Show that F can be simplified to give y+xzˉy + x \bar { z }

(Essay)
4.8/5
(25)

Using  Using   can be written in terms of  - + , \text { and } \cdot \text { as }\underline{\quad\quad}   can be written in terms of +, and  as - + , \text { and } \cdot \text { as }\underline{\quad\quad}

(Short Answer)
4.9/5
(39)

Let F(x, y, z) = y (x z) + y x + y z. Use a Karnaugh map to simplify the function F .

(Essay)
4.7/5
(26)

Using PPP can be written in terms of PPP

(Short Answer)
4.8/5
(34)

In questions determine whether the statement is TRUE or FALSE. Assume that x, y, and z represent Boolean variables. -x + y + z = x y z.

(True/False)
4.8/5
(36)
Showing 41 - 60 of 77
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)