Exam 7: Systems of Equations and Matrices

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

{x+y+z=6xz=2y+3z=11\left\{ \begin{array} { l } x + y + z = 6 \\x - z = - 2 \\y + 3 z = 11\end{array} \right.

(Multiple Choice)
4.9/5
(28)

We have encoded a message by assigning the numbers 1 - 26 to the letters a - z of the alphabet, respectively, and assigning 27 to a blank space. We have further encoded it by using an encoding matrix. Decode this message by finding the inverse of the encoding matrix and multiplying it times the coded message. -The encoding matrix i A=[100110111] and the encoded message is 9,11,56,9,10,55,12,3,43,9,5,30A = \left[ \begin{array} { r r r } 1 & 0 & 0 \\- 1 & 1 & 0 \\1 & 1 & 1\end{array} \right] \text { and the encoded message is } 9,11,56,9,10,55,12 , - 3,43,9,5,30

(Short Answer)
4.9/5
(40)

The following system does not have a unique solution. Solve the system. - {2x+3y+z=243xy+5z=8x+2y+6z=16\left\{ \begin{array} { c } - 2 x + 3 y + z = - 24 \\3 x - y + 5 z = 8 \\x + 2 y + 6 z = - 16 \\\end{array} \right.

(Multiple Choice)
4.9/5
(35)

Solve using Cramer's Rule. -Two different gasohol mixtures are available. One contains 5% alcohol and the other 12% alcohol. How much of each should be mixed to obtain 1000 gallons of gasohol containing 10% alcohol?

(Multiple Choice)
4.9/5
(32)

Find the indicated sum or difference, if it is defined. - [161865]+[632256]\left[ \begin{array} { l l } - 1 & - 6 \\- 1 & - 8 \\- 6 & - 5\end{array} \right] + \left[ \begin{array} { r r } 6 & 3 \\- 2 & - 2 \\- 5 & - 6\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Decide whether or not matrix A and matrix B are inverses. - A=[6535] and B=[1/31/31/52/5]A = \left[ \begin{array} { r r } 6 & - 5 \\- 3 & 5\end{array} \right] \text { and } B = \left[ \begin{array} { l l } 1 / 3 & 1 / 3 \\1 / 5 & 2 / 5\end{array} \right]

(Multiple Choice)
4.8/5
(35)

first two games of the season. Write a matrix containing the total number of points and rebounds for each of the starting five. Game 1 Points Rebounds Levy 20 3 Cowens 16 5 Williams 8 12 Miller 6 11 Jenkins 10 2 Game 2 Points Rebounds Levy 18 4 Cowens 14 3 Williams 12 9 Miller 4 10 Jenkins 10 3 A) [562]\left[ \begin{array} { l l } 5 & 62 \end{array} \right] В) [73830821202110520]\left[ \begin{array} { r r } 7 & 38 \\ 30 & 8 \\ 21 & 20 \\ 21 & 10 \\ 5 & 20 \end{array} \right] C) [38730820211021205]\left[ \begin{array} { r r } 38 & 7 \\ 30 & 8 \\ 20 & 21 \\ 10 & 21 \\ 20 & 5 \end{array} \right] D) [625][ 625 ] Answer: C -A bakery sells four main items: rolls, bread, cake, and pie. The amount of each of five ingredients (in cups, except for eggs) required to make a dozen rolls, a loaf of bread, a cake, or a pie is given by matrix A.  first two games of the season. Write a matrix containing the total number of points and rebounds for each of the starting five.   \begin{array}{l} \begin{array} { l | c | c }  \text { Game } 1 & \text { Points } & \text { Rebounds } \\ \hline \text { Levy } & 20 & 3 \\ \text { Cowens } & 16 & 5 \\ \text { Williams } & 8 & 12 \\ \text { Miller } & 6 & 11 \\ \text { Jenkins } & 10 & 2 \end{array}\\\\ \begin{array} { l | c | c }  \text { Game } 2 & \text { Points } & \text { Rebounds } \\ \hline \text { Levy } & 18 & 4 \\ \text { Cowens } & 14 & 3 \\ \text { Williams } & 12 & 9 \\ \text { Miller } & 4 & 10 \\ \text { Jenkins } & 10 & 3 \end{array} \end{array}   A)  \left[ \begin{array} { l l } 5 & 62 \end{array} \right]  В)  \left[ \begin{array} { r r } 7 & 38 \\ 30 & 8 \\ 21 & 20 \\ 21 & 10 \\ 5 & 20 \end{array} \right]  C)  \left[ \begin{array} { r r } 38 & 7 \\ 30 & 8 \\ 20 & 21 \\ 10 & 21 \\ 20 & 5 \end{array} \right]  D)  [ 625 ]  Answer: C -A bakery sells four main items: rolls, bread, cake, and pie. The amount of each of five ingredients (in cups, except for eggs) required to make a dozen rolls, a loaf of bread, a cake, or a pie is given by matrix A.   Suppose a day's orders total 20 dozen rolls, 200 loaves of bread, 50 cakes, and 60 pies. Write the orders as a  1 \times 4  matrix and, using matrix multiplication, find a matrix for the amount of each ingredient needed to fill the day's orders. Suppose a day's orders total 20 dozen rolls, 200 loaves of bread, 50 cakes, and 60 pies. Write the orders as a 1×41 \times 4 matrix and, using matrix multiplication, find a matrix for the amount of each ingredient needed to fill the day's orders.

(Multiple Choice)
4.7/5
(37)

002195076\left| \begin{array} { r r r } 0 & 0 & 2 \\1 & - 9 & 5 \\0 & 7 & 6\end{array} \right|

(Multiple Choice)
4.9/5
(37)

Find the value of the determinant. - 171667\left| \begin{array} { r r } \frac { 1 } { 7 } & - \frac { 1 } { 6 } \\6 & 7\end{array} \right|

(Multiple Choice)
4.8/5
(31)

Find the inverse matrix of A. - A=[111211223]A = \left[ \begin{array} { l l l } 1 & 1 & 1 \\2 & 1 & 1 \\2 & 2 & 3\end{array} \right]

(Multiple Choice)
4.7/5
(28)

Solve for x. - x612x510=22\left| \begin{array} { l l } x - 6 & - 12 \\x - 5 & - 10\end{array} \right| = 22

(Multiple Choice)
4.8/5
(39)

Compute AB, if possible. - A=[3230]A = \left[ \begin{array} { r r } 3 & - 2 \\ 3 & 0 \end{array} \right] and B=[0236]B = \left[ \begin{array} { r r } 0 & - 2 \\ 3 & 6 \end{array} \right]

(Multiple Choice)
4.9/5
(32)

Use an inverse matrix to find the solution to the system. - {4x+3yz=3x6y+8z=58x+y+z=51\left\{ \begin{array} { c } - 4 x + 3 y - z = - 3 \\x - 6 y + 8 z = - 5 \\8 x + y + z = 51\end{array} \right.

(Multiple Choice)
4.9/5
(37)

We can encode a message by assigning the numbers 1 - 26 to the letters a - z of the alphabet, respectively, and assigning 27 to a blank space. To further encode a message, we can use an encoding matrix A to convert these numbers into new pairs or triples of numbers. Use matrix A to encode the given message. -Convert "I love you" from letters to numbers. Use pairs of those numbers, in order, to create 2×12 \times 1 matrices, and multiply A=[2113]\mathrm { A } = \left[ \begin{array} { l l } 2 & 1 \\ 1 & 3 \end{array} \right] times those matrices to encode the message "I love you" into pairs of coded numbers. Combine the pairs of numbers to give the encoded numerical message.

(Short Answer)
4.7/5
(37)

Decide whether or not matrix A and matrix B are inverses. - A=[100110111] and B=[100110211]A = \left[ \begin{array} { r r r } 1 & 0 & 0 \\- 1 & 1 & 0 \\1 & 1 & 1\end{array} \right] \text { and } B = \left[ \begin{array} { r r r } 1 & 0 & 0 \\1 & 1 & 0 \\- 2 & - 1 & 1\end{array} \right]

(Multiple Choice)
4.7/5
(31)

first two games of the season. Write a matrix containing the total number of points and rebounds for each of the starting five. Game 1 Points Rebounds Levy 20 3 Cowens 16 5 Williams 8 12 Miller 6 11 Jenkins 10 2 Game 2 Points Rebounds Levy 18 4 Cowens 14 3 Williams 12 9 Miller 4 10 Jenkins 10 3 A) [562]\left[ \begin{array} { l l } 5 & 62 \end{array} \right] В) [73830821202110520]\left[ \begin{array} { r r } 7 & 38 \\ 30 & 8 \\ 21 & 20 \\ 21 & 10 \\ 5 & 20 \end{array} \right] C) [38730820211021205]\left[ \begin{array} { r r } 38 & 7 \\ 30 & 8 \\ 20 & 21 \\ 10 & 21 \\ 20 & 5 \end{array} \right] D) [625][ 625 ] Answer: C -The tables below show the times by three runners in two heats of a race. Write a matrix that shows the increase (decrease) in each time from the first heat to the second. Heat 1 Time (sec.) Russell 15.5 Sergy 15.8 Omar 162 Heat 2 Time () Russell 15.3 Sergy 15.4 Omar 15.7

(Multiple Choice)
4.7/5
(31)

{6y+w=25x+y+4zw=146x+z+4w=6x+y+4z=13\left\{ \begin{aligned}6 y + w & = - 25 \\x + y + 4 z - w & = 14 \\6 x + z + 4 w & = 6 \\x + y + 4 z & = 13\end{aligned} \right.

(Multiple Choice)
4.7/5
(28)

{xy=0x2+2y=20\left\{ \begin{array} { l } \sqrt { x } - y = 0 \\x ^ { 2 } + 2 y = 20\end{array} \right.

(Multiple Choice)
4.8/5
(32)

Compute AB, if possible. - A=[824]A = \left[ \begin{array} { l l l } - 8 & 2 & 4 \end{array} \right] and B=[503]B = \left[ \begin{array} { r } 5 \\ 0 \\ - 3 \end{array} \right]

(Multiple Choice)
4.8/5
(28)

We have encoded a message by assigning the numbers 1 - 26 to the letters a - z of the alphabet, respectively, and assigning 27 to a blank space. We have further encoded it by using an encoding matrix. Decode this message by finding the inverse of the encoding matrix and multiplying it times the coded message. -The encoding matrix i A=[1132] and the encoded message is 29,63,28,72,10,21,41,96,29,67A = \left[ \begin{array} { l l } 1 & 1 \\3 & 2\end{array} \right] \text { and the encoded message is } 29,63,28,72,10,21,41,96,29,67

(Short Answer)
4.9/5
(34)
Showing 21 - 40 of 196
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)