Exam 12: Congruence and Similarity With Constructions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve. -Given the following triangle, construct the point P that is equidistant from the 3 vertices of the triangle. Solve. -Given the following triangle, construct the point P that is equidistant from the 3 vertices of the triangle.

Free
(Essay)
4.8/5
(36)
Correct Answer:
Verified

Solve. -How many different rotational symmetries does a square have?

Free
(Multiple Choice)
4.7/5
(34)
Correct Answer:
Verified

B

Answer the question. -A building is 25 feet tall. Its shadow is 50 feet long. A nearby building is 15 feet tall. Find the length of the shadow of the second building.

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

A

Provide an appropriate response. -  Determine whether the given conditions are sufficient to prove that DEFPQR. Justify your \text { Determine whether the given conditions are sufficient to prove that } \triangle D E F \cong \triangle P Q R \text {. Justify your } answer. DEPQ,EFQR,DFPR\overline { \mathrm { DE } } \cong \overline { \mathrm { PQ } } , \overline { \mathrm { EF } } \cong \overline { \mathrm { QR } } , \overline { \mathrm { DF } } \cong \overline { \mathrm { PR } }

(Multiple Choice)
5.0/5
(34)

Solve. -Construct the perpendicular bisectors of the right triangle. Solve. -Construct the perpendicular bisectors of the right triangle.

(Essay)
4.9/5
(35)

Provide an appropriate response. -  Determine whether the given conditions are sufficient to prove that MNOSTU. Justify your \text { Determine whether the given conditions are sufficient to prove that } \triangle \mathrm { MNO } \simeq \triangle \mathrm { STU } \text {. Justify your } answer. MNST,NOTU,NT\overline { \mathrm { MN } } \cong \overline { \mathrm { ST } } , \overline { \mathrm { NO } } \cong \overline { \mathrm { TU } } , \angle \mathrm { N } \cong \angle \mathrm { T }

(Multiple Choice)
4.8/5
(42)

Provide an appropriate response. -The two triangles shown below are congruent. The angles corresponding to ,K\angle , \angle K , and \angle (in order) are____  Provide an appropriate response. -The two triangles shown below are congruent. The angles corresponding to  \angle , \angle K , and  \angle  (in order) are____

(Multiple Choice)
4.8/5
(36)

These triangles are similar. Find the missing length. -These triangles are similar. Find the missing length. -

(Multiple Choice)
4.8/5
(39)

Provide an appropriate response. -For what kind of triangles will the perpendicular bisectors of the sides intersect on a side of the triangle?

(Multiple Choice)
4.8/5
(31)

Use a ruler, protractor, and compass to construct, if possible, a triangle with the stated properties. If such a triangle cannot be drawn, explain why. Decide if there can be two or more noncongruent triangles with the stated properties. -A triangle with sides of length 11 cm and 11 cm and a nonincluded angle of 46°

(Multiple Choice)
4.9/5
(37)

Provide the requested proof. -  In the trapezoid below, m(D)=m(C). Prove that AD=BC\text { In the trapezoid below, } \mathrm { m } ( \angle \mathrm { D } ) = \mathrm { m } ( \angle \mathrm { C } ) \text {. Prove that } \mathrm { AD } = \mathrm { BC } \text {. }  Provide the requested proof. - \text { In the trapezoid below, } \mathrm { m } ( \angle \mathrm { D } ) = \mathrm { m } ( \angle \mathrm { C } ) \text {. Prove that } \mathrm { AD } = \mathrm { BC } \text {. }

(Essay)
4.8/5
(33)

Solve. -Describe how to construct a regular octagon in a given circle so that the circle circumscribes the octagon.

(Essay)
4.9/5
(37)

Answer the question. -What minimum information is sufficient to determine the congruency of two equilateral triangles?

(Multiple Choice)
4.8/5
(28)

Provide an appropriate response. -  Determine whether the given conditions are sufficient to prove that GHISTU. Justify your \text { Determine whether the given conditions are sufficient to prove that } \triangle \mathrm { GHI } \cong \triangle \mathrm { STU } \text {. Justify your } answer. USU GI,STGH\angle \mathrm { U } \cong \angle \mathrm { \textrm {SU } } \cong \overline { \mathrm { GI } } , \overline { \mathrm { ST } } \cong \overline { \mathrm { GH } }

(Multiple Choice)
4.8/5
(30)

Tell whether the triangles are similar or not similar. -Tell whether the triangles are similar or not similar. -

(Multiple Choice)
4.7/5
(36)

Answer the question. -Is a kite a parallelogram?

(Short Answer)
4.8/5
(37)

Solve. -Given the following triangle, construct the point P that is equidistant from the 3 vertices of the triangle. Solve. -Given the following triangle, construct the point P that is equidistant from the 3 vertices of the triangle.

(Essay)
4.9/5
(32)

Solve. -Explain how to construct a square given one side AB\overline { \mathrm { AB } } and constructing only parallel lines. If it is not possible, explain why.

(Essay)
5.0/5
(33)

Solve. -Consider the isosceles triangles ABC and PQR. If side AB is glued to side PQ, what type of quadrilateral is formed? Solve. -Consider the isosceles triangles ABC and PQR. If side AB is glued to side PQ, what type of quadrilateral is formed?

(Short Answer)
4.8/5
(37)

Use a ruler, protractor, and compass to construct, if possible, a triangle with the stated properties. If such a triangle cannot be drawn, explain why. Decide if there can be two or more noncongruent triangles with the stated properties. -A triangle with angles measuring 11° and 113° and a nonincluded side of length 11 cm

(Multiple Choice)
4.9/5
(36)
Showing 1 - 20 of 121
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)