Exam 12: Congruence and Similarity With Constructions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve. -Explain how to construct a parallelogram given two adjacent sides. If it is not possible, explain why.

(Essay)
4.8/5
(34)

Answer the question. -A quadrilateral is a______ if and only if opposite sides are parallel or congruent.

(Short Answer)
4.9/5
(32)

Provide the requested proof. -  In the figure below, AC=AD and BACDAE. Prove that the triangle ABE is isosceles. \text { In the figure below, } \mathrm { AC } = \mathrm { AD } \text { and } \angle \mathrm { BAC } \cong \angle \mathrm { DAE } \text {. Prove that the triangle } \mathrm { ABE } \text { is isosceles. }  Provide the requested proof. - \text { In the figure below, } \mathrm { AC } = \mathrm { AD } \text { and } \angle \mathrm { BAC } \cong \angle  \mathrm { DAE } \text {. Prove that the triangle } \mathrm { ABE } \text { is isosceles. }

(Essay)
4.9/5
(29)

If a rectangle is a square, it must also be a rhombus.

(True/False)
4.9/5
(34)

These triangles are similar. Find the missing length. -These triangles are similar. Find the missing length. -

(Multiple Choice)
4.7/5
(34)

Solve. -Describe how to draw a square so that a given circle circumscribes the square.

(Essay)
4.7/5
(30)

Use a ruler, protractor, and compass to construct, if possible, a triangle with the stated properties. If such a triangle cannot be drawn, explain why. Decide if there can be two or more noncongruent triangles with the stated properties. -A triangle with sides of length 19 cm, 9 cm, and 26 cm

(Multiple Choice)
4.8/5
(42)

Provide the requested proof. -Suppose polygon ABCD\mathrm { ABCD } is any square with diagonals AC\overline { \mathrm { AC } } and BD\overline { \mathrm { BD } } intersecting at point F\mathrm { F } .  Provide the requested proof. -Suppose polygon  \mathrm { ABCD }  is any square with diagonals  \overline { \mathrm { AC } }  and  \overline { \mathrm { BD } }  intersecting at point  \mathrm { F } .    What can be said about any point on  \overline { \mathrm { AF } }  and points  \mathrm { B }  and  \mathrm { D }  ? What can be said about any point on AF\overline { \mathrm { AF } } and points B\mathrm { B } and D\mathrm { D } ?

(Essay)
4.9/5
(28)

These triangles are similar. Find the missing length. -These triangles are similar. Find the missing length. -

(Multiple Choice)
4.8/5
(34)

State whether the triangles are congruent. If the information given is not sufficient, state "No conclusion possible". -State whether the triangles are congruent. If the information given is not sufficient, state No conclusion possible. -

(Multiple Choice)
4.8/5
(27)

Answer the question. -A tree casts a shadow 40 meters long. At the same time, the shadow cast by a vertical 5 meter stick is 10 meters long. Find the height of the tree.

(Multiple Choice)
4.8/5
(30)

State whether the triangles are congruent. If the information given is not sufficient, state "No conclusion possible". -State whether the triangles are congruent. If the information given is not sufficient, state No conclusion possible. -

(Multiple Choice)
4.8/5
(37)

State whether the triangles are congruent. If the information given is not sufficient, state "No conclusion possible". -State whether the triangles are congruent. If the information given is not sufficient, state No conclusion possible. -

(Multiple Choice)
4.8/5
(41)

Solve. -Given a right triangle ABC, explain how to construct an altitude from vertex A. Solve. -Given a right triangle ABC, explain how to construct an altitude from vertex A.

(Essay)
4.8/5
(33)

Solve. -Given AB\overline { \mathrm { AB } } , construct the perpendicular bisector of AB\overline { \mathrm { AB } } without putting any marks below AB\overline { \mathrm { AB } } .  Solve. -Given  \overline { \mathrm { AB } } , construct the perpendicular bisector of  \overline { \mathrm { AB } }  without putting any marks below  \overline { \mathrm { AB } } .

(Essay)
4.8/5
(38)

Solve. -Explain how to construct a triangle with two obtuse angles. If it is not possible, explain why.

(Essay)
4.8/5
(37)

Answer the question. -What type of figure is formed by joining the midpoints of the adjacent sides of a rectangle?

(Short Answer)
4.8/5
(32)

A sector of a circle is a pie-shaped section bounded by two radii and an arc. What is a minimal set of conditions for determining that two sectors of the same circle are congruent?

(Essay)
4.8/5
(29)

Answer the question. -Are two regular pentagons always similar? Explain why or why not.

(Essay)
4.8/5
(32)

Provide the requested proof. -  In the figure below, AB=CD,BE=FC and BC. Prove that AF=ED\text { In the figure below, } \mathrm { AB } = \mathrm { CD } , \mathrm { BE } = \mathrm { FC } \text { and } \angle \mathrm { B } \cong \angle \mathrm { C } \text {. Prove that } \mathrm { AF } = \mathrm { ED } \text {. }  Provide the requested proof. - \text { In the figure below, } \mathrm { AB } = \mathrm { CD } , \mathrm { BE } = \mathrm { FC } \text { and } \angle \mathrm { B } \cong \angle \mathrm { C } \text {. Prove that } \mathrm { AF } = \mathrm { ED } \text {. }

(Essay)
4.8/5
(36)
Showing 61 - 80 of 121
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)