Exam 3: Polynomial and Rational Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Translate the given formula to an English phrase using the word ʺvariesʺ. - f\mathrm { f } - stop =fD= \frac { \mathrm { f } } { \mathrm { D } } , where f\mathrm { f } - stop is camera setting with a lens with focal length f\mathrm { f } and diaphragm opening D

(Essay)
4.8/5
(43)

Express f(x) in the form f(x) = (x - k)q(x) + r for the given value of k. - f(x)=2x4x315x2+3x;k=3f ( x ) = 2 x ^ { 4 } - x ^ { 3 } - 15 x ^ { 2 } + 3 x ; k = - 3

(Multiple Choice)
4.8/5
(44)

Graph the polynomial function. Factor first if the expression is not in factored form. - f(x)=x3+3x2x3f(x)=x^{3}+3 x^{2}-x-3  Graph the polynomial function. Factor first if the expression is not in factored form. - f(x)=x^{3}+3 x^{2}-x-3

(Multiple Choice)
4.7/5
(31)

Solve the problem. -The number of mosquitoes M(x)\mathrm { M } ( \mathrm { x } ) , in millions, in a certain area depends on the June rainfall x\mathrm { x } , in inches: M(x)=13xx2\mathrm { M } ( \mathrm { x } ) = 13 \mathrm { x } - \mathrm { x } ^ { 2 } . What rainfall produces the maximum number of mosquitoes?

(Multiple Choice)
4.8/5
(36)

Solve the problem. -The length of a rectangle is 4 inches more than its width. If 2 inches are taken from the length and added to the width, the figure becomes a square with an area of 144 square inches. What are the dimensions of the original figure?

(Multiple Choice)
4.7/5
(31)

Translate the given formula to an English phrase using the word ʺvariesʺ. - r=dt, where r is the rate by which distance d is covered in time \mathrm { r } = \frac { \mathrm { d } } { \mathrm { t } } \text {, where } \mathrm { r } \text { is the rate by which distance } \mathrm { d } \text { is covered in time }

(Short Answer)
4.9/5
(35)

Find the correct end behavior diagram for the given polynomial function. - P(x)=3x7+6x29P ( x ) = 3 x ^ { 7 } + 6 x ^ { 2 } - 9

(Multiple Choice)
5.0/5
(32)

Find a polynomial of least degree with only real coefficients and having the given zeros. - 5,5- \sqrt { 5 } , \sqrt { 5 } , and 1 (multiplicity 2 )

(Multiple Choice)
4.8/5
(32)

Use synthetic division to decide whether the given number k is a zero of the given polynomial function. - 2;f(x)=2x3+x24x+3- 2 ; f ( x ) = - 2 x ^ { 3 } + x ^ { 2 } - 4 x + 3

(Multiple Choice)
4.8/5
(40)

Find the zeros of the polynomial function and state the multiplicity of each. - f(x)=5x2(x8)(x+4)3f ( x ) = - 5 x ^ { 2 } ( x - 8 ) ( x + 4 ) ^ { 3 }

(Multiple Choice)
4.9/5
(39)

Give all possible rational zeros for the following polynomial. - P(x)=2x35x2+7x3P ( x ) = 2 x ^ { 3 } - 5 x ^ { 2 } + 7 x - 3

(Multiple Choice)
4.9/5
(35)

Factor f(x) into linear factors given that k is a zero of f(x). - f(x)=x375x250;k=5\mathrm { f } ( \mathrm { x } ) = \mathrm { x } ^ { 3 } - 75 \mathrm { x } - 250 ; \mathrm { k } = - 5 (multiplicity 2 ))

(Multiple Choice)
4.8/5
(40)

Solve the problem. - f(x)=x4+4f(x)=-x^{4}+4  Solve the problem. - f(x)=-x^{4}+4

(Multiple Choice)
4.9/5
(35)

Use a graphing calculator to find the coordinates of the turning points of the graph of the polynomial function in the indicated domain interval. Give answers to the nearest hundredth. - f(x)=x32x+3;[0,1]f ( x ) = x ^ { 3 } - 2 x + 3 ; [ 0,1 ]

(Multiple Choice)
4.9/5
(37)

Determine whether the statement is true or false. -If f(x) is a polynomial having only real coefficients and 2 - 4i is a zero of f(x), then 2 + 4i is also a zero.

(True/False)
4.9/5
(37)

Use the remainder theorem and synthetic division to find f(k). - k=5;f(x)=x34x2+5x1\mathrm { k } = 5 ; \mathrm { f } ( \mathrm { x } ) = \mathrm { x } ^ { 3 } - 4 \mathrm { x } ^ { 2 } + 5 \mathrm { x } - 1

(Multiple Choice)
4.9/5
(36)

Answer the question -How can the graph of f(x)=1x2+10f ( x ) = \frac { 1 } { x - 2 } + 10 be obtained from the graph of y=1xy = \frac { 1 } { x } ?

(Multiple Choice)
4.9/5
(39)

Solve the problem. Round to the nearest tenth unless indicated otherwise. -Wind resistance or atmospheric drag tends to slow down moving objects. Atmospheric drag varies jointly as an object's surface area A and velocity v. If a car traveling at a speed of 30mph30 \mathrm { mph } with a surface area of 31ft231 \mathrm { ft } ^ { 2 } experiences a drag of 130.2 N130.2 \mathrm {~N} (Newtons), how fast must a car with 50ft250 \mathrm { ft } ^ { 2 } of surface area travel in order to experience a drag force of 525 N525 \mathrm {~N} ?

(Multiple Choice)
4.9/5
(38)

Determine whether the statement is true or false. -If f(x) is a polynomial and f(-5) = 0, then x + 5 is a factor of f(x).

(True/False)
4.9/5
(42)

Solve the problem. -If yy varies directly as x2x ^ { 2 } and inversely as mm , and y=6y = 6 when x=8x = 8 and m=4m = 4 , find yy when x=9x = 9 and m=7.m = 7 .

(Multiple Choice)
5.0/5
(40)
Showing 301 - 320 of 516
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)