Exam 11: Further Topics in Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write the first n terms of the given arithmetic sequence (the value of n is indicated in the question). -The first term is 22 , and the common difference is 7;n=57 ; \mathrm { n } = 5

Free
(Multiple Choice)
4.7/5
(34)
Correct Answer:
Verified

C

Find the sum of the first n terms of the following arithmetic sequence. - a1=12,d=4;n=5a _ { 1 } = - 12 , d = 4 ; \quad n = 5

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

B

Write the first n terms of the given arithmetic sequence (the value of n is indicated in the question). -The first term is 1+17- 1 + \sqrt { 17 } , and the common difference is 4;n=34 ; \mathrm { n } = 3

Free
(Multiple Choice)
4.9/5
(46)
Correct Answer:
Verified

D

Evaluate the sum. Round to two decimal places, if necessary. - k=14(1)k(k+5)\sum _ { \mathrm { k } = 1 } ^ { 4 } ( - 1 ) ^ { \mathrm { k } } ( \mathrm { k } + 5 )

(Multiple Choice)
4.9/5
(30)

Use a graphing calculator to evaluate the series. - j=310(5j218)\sum _ { j = 3 } ^ { 10 } \left( 5 j ^ { 2 } - 18 \right)

(Multiple Choice)
4.8/5
(40)

It can be shown that (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \frac { n ( n - 1 ) ( n - 2 ) } { 3 ! } x ^ { 3 } \ldots is true for any real number n (not just positive integer values) and any real number x, where x<1| x | < 1 Use this series to approximate the given number to the nearest thousandth. - 12+42+72++(3n2)2=n(6n23n1)21 ^ { 2 } + 4 ^ { 2 } + 7 ^ { 2 } + \ldots + ( 3 n - 2 ) ^ { 2 } = \frac { n \left( 6 n ^ { 2 } - 3 n - 1 \right) } { 2 }

(Essay)
4.8/5
(43)

Evaluate the series, if it converges. - 6483169+- 6 - 4 - \frac { 8 } { 3 } - \frac { 16 } { 9 } + \ldots

(Multiple Choice)
4.8/5
(28)

Provide an appropriate response. -Consider the arrangements of the letters in the word ALGEBRA. Is this a combination, a permutation, or neither?

(Multiple Choice)
4.9/5
(37)

Write the binomial expansion of the expression. - (3x+1)4( 3 x + 1 ) ^ { 4 }

(Multiple Choice)
5.0/5
(36)

Decide whether the given sequence is finite or infinite. --5, -4, -3, -2

(Multiple Choice)
5.0/5
(37)

Find the sum of the first n terms of the following arithmetic sequence. - a2=25,a5=35;n=10a _ { 2 } = - 25 , a _ { 5 } = 35 ; \quad \mathrm { n } = 10

(Multiple Choice)
4.8/5
(43)

Evaluate the sum. Round to two decimal places, if necessary. - k=252k\sum _ { \mathrm { k } = 2 } ^ { 5 } 2 ^ { \mathrm { k } }

(Multiple Choice)
4.8/5
(44)

Use the formula for Sn to find the sum of the first five terms of the geometric sequence. - 3,34,316,364,3 , \frac { 3 } { 4 } , \frac { 3 } { 16 } , \frac { 3 } { 64 } , \ldots

(Multiple Choice)
4.8/5
(41)

Solve the problem. -A musician plans to perform 9 selections. In how many ways can she arrange the musical selections?

(Multiple Choice)
4.8/5
(43)

Decide whether the given sequence is finite or infinite. - a1=5; for n2,an=4an1+8\mathrm { a } _ { 1 } = 5 \text {; for } \mathrm { n } \geq 2 , \mathrm { a } _ { \mathrm { n } } = 4 \cdot \mathrm { a } _ { \mathrm { n } - 1 } + 8

(Multiple Choice)
4.8/5
(36)

Evaluate the series, if it converges. - k=1(310)k\sum _ { \mathrm { k } = 1 } ^ { \infty } \left( \frac { 3 } { 10 } \right) ^ { \mathrm { k } }

(Multiple Choice)
4.8/5
(43)

Find the probability. -Two 6-sided dice are rolled. What is the probability that the sum of the two numbers on the dice will be greater than 10?

(Multiple Choice)
4.9/5
(38)

Solve the problem. -An ordinary die is tossed. What are the odds in favor of the die showing an odd number?

(Multiple Choice)
4.8/5
(38)

Find the sum of the first n terms of the following arithmetic sequence. - 5,2,1,;n=10- 5 , - 2,1 , \ldots ; \mathrm { n } = 10

(Multiple Choice)
4.9/5
(32)

Use a graphing calculator to evaluate the sum. Round to the nearest thousandth. - i=292(0.93)i\sum _ { i = 2 } ^ { 9 } - 2 ( 0.93 ) i

(Multiple Choice)
4.9/5
(44)
Showing 1 - 20 of 351
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)