Exam 7: Conic Sections

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the center, vertices, and asymptotes to graph the hyperbola. - (x+2)24(y+2)2=4( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4  Use the center, vertices, and asymptotes to graph the hyperbola. - ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4

(Multiple Choice)
4.7/5
(39)

Graph the parabola. - x2=6yx ^ { 2 } = 6 y  Graph the parabola. - x ^ { 2 } = 6 y

(Multiple Choice)
4.8/5
(32)

Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. - {x225+y29=1y=3\left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\y = 3\end{array} \right.  Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. - \left\{ \begin{array} { l }  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\ y = 3 \end{array} \right.

(Multiple Choice)
5.0/5
(39)

Convert the equation to the standard form for a hyperbola by completing the square on x and y. - x2y24x+4y1=0x ^ { 2 } - y ^ { 2 } - 4 x + 4 y - 1 = 0

(Multiple Choice)
4.8/5
(39)

Graph the ellipse and locate the foci. - 4x2=369y24 x ^ { 2 } = 36 - 9 y ^ { 2 }  Graph the ellipse and locate the foci. - 4 x ^ { 2 } = 36 - 9 y ^ { 2 }

(Multiple Choice)
4.8/5
(39)

Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - 4x29y2=364 x^{2}-9 y^{2}=36  Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - 4 x^{2}-9 y^{2}=36

(Multiple Choice)
4.8/5
(43)

Additional Concepts Use the relation's graph to determine its domain and range. - y24x225=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1  Additional Concepts Use the relation's graph to determine its domain and range. - \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1

(Multiple Choice)
4.9/5
(34)

Graph Parabolas with Vertices Not at the Origin Find the vertex, focus, and directrix of the parabola with the given equation. - (y4)2=16(x2)( y - 4 ) ^ { 2 } = - 16 ( x - 2 )

(Multiple Choice)
4.8/5
(32)

Additional Concepts Use the relation's graph to determine its domain and range. - x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1  Additional Concepts Use the relation's graph to determine its domain and range. - \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1

(Multiple Choice)
4.9/5
(40)

Write Equations of Ellipses in Standard Form - Write Equations of Ellipses in Standard Form -  Center at  ( - 1,1 ) Center at (1,1)( - 1,1 )

(Multiple Choice)
4.8/5
(36)

Find the standard form of the equation of the hyperbola. -Find the standard form of the equation of the hyperbola. -

(Multiple Choice)
4.8/5
(40)

Graph Ellipses Not Centered at the Origin - 16(x1)2+4(y2)2=6416 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64  Graph Ellipses Not Centered at the Origin - 16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64

(Multiple Choice)
4.9/5
(45)

Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation. - x2=8yx ^ { 2 } = - 8 y

(Multiple Choice)
4.9/5
(42)

Graph Parabolas with Vertices Not at the Origin Find the vertex, focus, and directrix of the parabola with the given equation. - (x+4)2=4(y+1)( x + 4 ) ^ { 2 } = - 4 ( y + 1 )

(Multiple Choice)
4.9/5
(36)

Graph Ellipses Not Centered at the Origin - (x+1)29+(y1)216=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1  Graph Ellipses Not Centered at the Origin - \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1

(Multiple Choice)
4.9/5
(40)

Use the vertex and the direction in which the parabola opens to determine the relation's domain and range. - x=(y+1)2+8x = - ( y + 1 ) ^ { 2 } + 8

(Multiple Choice)
4.8/5
(33)

Find the standard form of the equation of the ellipse satisfying the given conditions. -Foci: (3,0),(3,0)( - 3,0 ) , ( 3,0 ) ; vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )

(Multiple Choice)
4.7/5
(35)

Find the foci of the ellipse whose equation is given. - 36(x1)2+25(y3)2=90036 ( \mathrm { x } - 1 ) ^ { 2 } + 25 ( \mathrm { y } - 3 ) ^ { 2 } = 900

(Multiple Choice)
4.7/5
(37)

Graph the parabola. - y2=6xy ^ { 2 } = - 6 x  Graph the parabola. - y ^ { 2 } = - 6 x

(Multiple Choice)
4.7/5
(31)

Graph the parabola. - y2+12x=0y ^ { 2 } + 12 x = 0  Graph the parabola. - y ^ { 2 } + 12 x = 0

(Multiple Choice)
4.9/5
(41)
Showing 21 - 40 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)