Exam 6: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[5332],B=[2335]A = \left[ \begin{array} { l l } 5 & 3 \\3 & 2\end{array} \right] , \quad B = \left[ \begin{array} { r r } 2 & - 3 \\- 3 & 5\end{array} \right]

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

A

Evaluate the determinant. - 1164\left| \begin{array} { r r } 1 & 1 \\ - 6 & - 4 \end{array} \right|

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

A

Solve the problem. -The area of a triangle with vertices (x1,y1),(x2,y2)\left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , and (x3,y3)\left( x _ { 3 } , y _ { 3 } \right) is  Area =±12x1y11x2y21x3y31\text { Area } = \pm \frac { 1 } { 2 } \left| \begin{array} { l l l } x _ { 1 } & y _ { 1 } & 1 \\x _ { 2 } & y _ { 2 } & 1 \\x _ { 3 } & y _ { 3 } & 1\end{array} \right| where the symbol ±\pm indicates that the appropriate sign should be chosen to yield a positive area. Use this formula to find the area of a triangle whose vertices are (2,10),(6,4)( 2,10 ) , ( 6 , - 4 ) , and (3,9)( - 3 , - 9 ) .

Free
(Multiple Choice)
4.8/5
(29)
Correct Answer:
Verified

A

Solve the problem. -Let A=[12]A = \left[ \begin{array} { l l } - 1 & 2 \end{array} \right] and B=[10]B = \left[ \begin{array} { l l } 1 & 0 \end{array} \right] . Find 2A+3B2 A + 3 B .

(Multiple Choice)
4.8/5
(32)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[4262]A = \left[ \begin{array} { r r } 4 & - 2 \\- 6 & 2\end{array} \right]

(Multiple Choice)
4.8/5
(35)

Solve the problem. -Let A=[7125]A = \left[ \begin{array} { r r } - 7 & 1 \\ 2 & 5 \end{array} \right] and B=[6233]B = \left[ \begin{array} { r r } 6 & 2 \\ 3 & - 3 \end{array} \right] . Find A+BA + B .

(Multiple Choice)
5.0/5
(39)

Write a system of linear equations in three variables, and then use matrices to solve the system. -The table below shows the number of birds for three selected years after an endangered species protection program was started.  Write a system of linear equations in three variables, and then use matrices to solve the system. -The table below shows the number of birds for three selected years after an endangered species protection program was started.    Use the quadratic function  y = a x ^ { 2 } + b x + c  to model the data. Solve the system of linear equations involving  a , b , and  c  using matrices. Find the equation that models the data. Use the quadratic function y=ax2+bx+cy = a x ^ { 2 } + b x + c to model the data. Solve the system of linear equations involving a,ba , b , and cc using matrices. Find the equation that models the data.

(Multiple Choice)
4.9/5
(40)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[2444],B=[12141214]A = \left[ \begin{array} { r r } - 2 & 4 \\4 & - 4\end{array} \right] , \quad B = \left[ \begin{array} { l } \frac { 1 } { 2 } \frac { 1 } { 4 } \\\frac { 1 } { 2 } \frac { 1 } { 4 }\end{array} \right]

(Multiple Choice)
4.7/5
(38)

Apply Gaussian Elimination to Systems with More Variables than Equations Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - 2x+y+2z-4w =10 x+3y+2z-11w =17 3x+y+7z-21w =0

(Multiple Choice)
4.8/5
(37)

Model Applied Situations with Matrix Operations The \perp shape in the figure below is shown using 9 pixels in a 3×33 \times 3 grid. The color levels are given to the right of the figure. Use the matrix [131131333]\left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right] that represents a digital photograph of the \perp shape to solve the problem.  Model Applied Situations with Matrix Operations  The  \perp  shape in the figure below is shown using 9 pixels in a  3 \times 3  grid. The color levels are given to the right of the figure. Use the matrix  \left[ \begin{array} { l l l } 1 & 3 & 1 \\ 1 & 3 & 1 \\ 3 & 3 & 3 \end{array} \right]  that represents a digital photograph of the  \perp  shape to solve the problem.   -Adjust the contrast by leaving the black alone and changing the light grey to dark grey. Use matrix addition to accomplish this.   -Adjust the contrast by leaving the black alone and changing the light grey to dark grey. Use matrix addition to accomplish this.

(Multiple Choice)
4.9/5
(35)

Solve the problem. -Let A=[1053]A = \left[ \begin{array} { r r } - 1 & 0 \\ 5 & 3 \end{array} \right] and B=[1531]B = \left[ \begin{array} { r r } - 1 & 5 \\ 3 & 1 \end{array} \right] . Find ABA - B .

(Multiple Choice)
4.9/5
(38)

Write the augmented matrix for the system of equations. - x-5y+z=11 y+7z=19 z=15

(Multiple Choice)
4.8/5
(32)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[100110061]A = \left[ \begin{array} { r r r } 1 & 0 & 0 \\- 1 & 1 & 0 \\0 & - 6 & 1\end{array} \right]

(Multiple Choice)
4.7/5
(32)

Find the products AB and BA to determine whether B is the multiplicative inverse of A. - A=[10110],B=[01110]A = \left[ \begin{array} { l l } 10 & 1 \\- 1 & 0\end{array} \right] , \quad B = \left[ \begin{array} { r r } 0 & 1 \\- 1 & 10\end{array} \right]

(Multiple Choice)
4.8/5
(44)

Apply Gaussian Elimination to Systems Without Unique Solutions Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - 4x-y+3z=12 x+4y+6z=-32 5x+3y+9z=20

(Multiple Choice)
4.8/5
(32)

Use Cramer's rule to solve the system. - 4x+3y-z=31 x-3y+2z=-5 4x+y+z=29

(Multiple Choice)
4.8/5
(37)

Solve the problem. -Let A=[661568]A = \left[ \begin{array} { r r } - 6 & 6 \\ - 1 & - 5 \\ 6 & - 8 \end{array} \right] and B=[253966]B = \left[ \begin{array} { r r } 2 & - 5 \\ - 3 & - 9 \\ - 6 & 6 \end{array} \right] . Find A+BA + B .

(Multiple Choice)
4.9/5
(40)

Apply Gaussian Elimination to Systems Without Unique Solutions Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists. - 5x+2y+z=-11 2x-3y-z=17 7x-y=12

(Multiple Choice)
4.9/5
(49)

Solve the problem. -Let A=[132]A = \left[ \begin{array} { r } 1 \\ - 3 \\ 2 \end{array} \right] and B=[132]B = \left[ \begin{array} { r } - 1 \\ 3 \\ - 2 \end{array} \right] . Find A2BA - 2 B

(Multiple Choice)
4.8/5
(36)

Use Matrices and Gaussian Elimination to Solve Systems Solve the system of equations using matrices. Use Gaussian elimination with back-substitution. - x+y+z-w =6 2x-y+3z+4w =-4 4x+2y-z-w =-13 -x-2y+4z+3w= 12

(Multiple Choice)
4.8/5
(28)
Showing 1 - 20 of 152
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)