Exam 6: Additional Topics in Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

In the figure below, a=8,b=12a = 8 , b = 12 , and d=13d = 13 . Use this information to solve the parallelogram for β\beta . The diagonals of the parallelogram are represented by cc and dd . Round answer to two decimal places.  In the figure below,  a = 8 , b = 12 , and  d = 13 . Use this information to solve the parallelogram for  \beta . The diagonals of the parallelogram are represented by  c  and  d . Round answer to two decimal places.

(Multiple Choice)
4.7/5
(36)

Determine whether u\mathbf { u } and v\mathbf { v } are orthogonal, parallel, or neither. u=7,3,v=12,35\mathbf { u } = \langle - 7,3 \rangle , \mathbf { v } = \langle 12,35 \rangle

(Multiple Choice)
5.0/5
(36)

Given A =°16 , b =12 , and a = 10 , use the Law of Sines to solve the triangle (if possible) for the value of c. If two solutions exist, find both. Round answer to two Decimal places.

(Multiple Choice)
4.8/5
(32)

If u=i8j\mathbf { u } = - \mathbf { i } - 8 \mathbf { j } and v=4i+j\mathbf { v } = - 4 \mathbf { i } + \mathbf { j } , find w=3u4v\mathbf { w } = - 3 \mathbf { u } - 4 \mathbf { v } .

(Multiple Choice)
4.9/5
(39)

Find the magnitude of vector v\mathbf { v } .  Find the magnitude of vector  \mathbf { v } .

(Multiple Choice)
4.8/5
(35)

Given vectors u=u1,u2,v=v1,v2\mathbf { u } = \left\langle u _ { 1 } , u _ { 2 } \right\rangle , \mathbf { v } = \left\langle v _ { 1 } , v _ { 2 } \right\rangle , and w=w1,w2\mathbf { w } = \left\langle w _ { 1 } , w _ { 2 } \right\rangle , determine whether the result of the following expression is a vector or a scalar. (ww)w( w \cdot w ) w

(Multiple Choice)
4.7/5
(28)

Perform the operation below and leave the result in trigonometric form. 17(cos59+isin59)21(cos12+isin12)\frac { 17 \left( \cos 59 ^ { \circ } + i \sin 59 ^ { \circ } \right) } { 21 \left( \cos 12 ^ { \circ } + i \sin 12 ^ { \circ } \right) }

(Multiple Choice)
4.8/5
(39)

Use DeMoivre's Theorem to find the indicated power of the folllowing complex number. (6+6i)4( - 6 + 6 i ) ^ { 4 }

(Multiple Choice)
4.7/5
(38)

Perform the operation shown below and leave the result in trigonometric form. 8(cos2.3+isin2.3)4(cos1.7+isin1.7)\frac { 8 ( \cos 2.3 + i \sin 2.3 ) } { 4 ( \cos 1.7 + i \sin 1.7 ) }

(Multiple Choice)
5.0/5
(35)

Find the trigonometric form of the complex number shown below. 3i- 3 i

(Multiple Choice)
4.8/5
(32)

Use DeMoivre's Theorem to find the indicated power of the following complex number. [2(cosπ3+isinπ3)]12\left[ 2 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) \right] ^ { 12 }

(Multiple Choice)
4.9/5
(30)

Given vectors u=u1,u2,v=v1,v2\mathbf { u } = \left\langle u _ { 1 } , u _ { 2 } \right\rangle , \mathbf { v } = \left\langle v _ { 1 } , v _ { 2 } \right\rangle , and w=w1,w2\mathbf { w } = \left\langle w _ { 1 } , w _ { 2 } \right\rangle , determine whether the result of the following expression is a vector or a scalar. u4v\mathbf { u } \cdot 4 \mathrm { v }

(Multiple Choice)
4.8/5
(39)

Given A=54,B=69A = 54 ^ { \circ } , B = 69 ^ { \circ } , and a=7.1a = 7.1 , use the Law of Sines to solve the triangle for the value of bb . Round answer to two decimal places.  Given  A = 54 ^ { \circ } , B = 69 ^ { \circ } , and  a = 7.1 , use the Law of Sines to solve the triangle for the value of  b . Round answer to two decimal places.

(Multiple Choice)
4.9/5
(31)

Determine whether u\mathbf { u } and v\mathbf { v } are orthogonal, parallel, or neither. u=1,5,v=20,3\mathbf { u } = \langle 1 , - 5 \rangle , \mathbf { v } = \langle 20,3 \rangle

(Multiple Choice)
4.9/5
(34)

Find the vector v\mathbf { v } that has a magnitude of 4 and is in the same direction as u\mathbf { u } , where u=5,4\mathbf { u } = \langle - 5,4 \rangle .

(Multiple Choice)
4.8/5
(27)

Use Heron's area formula to find the area of the triangle pictured below, if a=8a = 8 inches, b=10\mathrm { b } = 10 inches, and c=4\mathrm { c } = 4 inches.  Use Heron's area formula to find the area of the triangle pictured below, if  a = 8  inches,  \mathrm { b } = 10  inches, and  \mathrm { c } = 4  inches.

(Multiple Choice)
4.9/5
(40)

Find the fourth roots of 12+32i- \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } i . Write the roots in trigonometric form.

(Multiple Choice)
4.7/5
(28)

Find the vector v that has a magnitude of 4 and is in the same direction as u, where u=5,3\mathbf { u } = \langle - 5 , - 3 \rangle \text {. }

(Multiple Choice)
4.9/5
(34)

A straight road makes an angle, AA , of 2020 ^ { \circ } with the horizontal. When the angle of elevation, BB , of the sun is 6060 ^ { \circ } , a vertical pole beside the road casts a shadow 8 feet long parallel to the road. Approximate the length of the pole. Round answer to two decimal places.  A straight road makes an angle,  A , of  20 ^ { \circ }  with the horizontal. When the angle of elevation,  B , of the sun is  60 ^ { \circ } , a vertical pole beside the road casts a shadow 8 feet long parallel to the road. Approximate the length of the pole. Round answer to two decimal places.

(Multiple Choice)
4.9/5
(33)

Given u=3,7\mathbf { u } = \langle - 3,7 \rangle and v=1,5\mathbf { v } = \langle 1 , - 5 \rangle , find uv\mathbf { u } \cdot \mathbf { v } .

(Multiple Choice)
4.8/5
(30)
Showing 21 - 40 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)